Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium.

Toxicol Appl Pharmacol

Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Germany.

Published: June 2010

Cytotoxicity and genotoxicity of nitrogen dioxide (NO(2)) as part of urban exhaust pollution are widely discussed as potential hazards to human health. This study focuses on toxic effects of NO(2) in realistic environmental concentrations with respect to the current limit values in a human target tissue of volatile xenobiotics, the epithelium of the upper aerodigestive tract. Nasal epithelial cells of 10 patients were cultured as an air-liquid interface and exposed to 0.01 ppm NO(2), 0.1 ppm NO(2), 1 ppm NO(2), 10 ppm NO(2) and synthetic air for half an hour. After exposure, genotoxicity was evaluated by the alkaline single-cell microgel electrophoresis (Comet) assay and by induction of micronuclei in the micronucleus test. Depression of proliferation and cytotoxic effects were determined using the micronucleus assay and trypan blue exclusion assay, respectively. The experiments revealed genotoxic effects by DNA fragmentation starting at 0.01 ppm NO(2) in the Comet assay, but no micronucleus inductions, no changes in proliferation, no signs of necrosis or apoptosis in the micronucleus assay, nor did the trypan blue exclusion assay show any changes in viability. The present data reveal a possible genotoxicity of NO(2) in urban concentrations in a screening test. However, permanent DNA damage as indicated by the induction of micronuclei was not observed. Further research should elucidate the effects of prolonged exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2010.03.003DOI Listing

Publication Analysis

Top Keywords

ppm no2
20
no2 ppm
12
nitrogen dioxide
8
urban concentrations
8
no2
8
no2 urban
8
001 ppm
8
comet assay
8
induction micronuclei
8
micronucleus assay
8

Similar Publications

Efficient room-temperature sensors for toxic gases are essential to ensure a safe and healthy life. Conducting frameworks have shown great promise in advancing gas sensing technologies. In this study, two new organic-inorganic frameworks [CuX(PPh)(L)], CP1 (X = I) and CP2 (X = Br) have been synthesized using (pyridin-4-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine (L) and triphenylphosphine.

View Article and Find Full Text PDF

Residual nitrite (NO) and nitrate (NO) have been widely studied in the past few decades for their function to improve processed meat quality and their impact on human health. In this study we examined how the residual nitrite and nitrate (NO) content of major classes of processed meats products (n = 1132) produced locally from three regions (East Coast, Midwest and West Coast) and plant protein-based meat analogues (n = 53) available at retail in the United States was influenced by their composition, processing, and geographical attributes. We also conducted time-dependent depletion studies and observed different patterns of NO depletion and conversion during processing and storage and correlated them with product quality.

View Article and Find Full Text PDF

ZnO/MO (M = Fe, Co, Ni, Sn, In, Ga; [M]/([Zn] + [M]) = 15 mol%) nanofiber heterostructures were obtained by co-electrospinning and characterized by X-ray diffraction, scanning electron microscopy and X-ray fluorescence spectroscopy. The sensor properties of ZnO and ZnO/MO nanofibers were studied toward reducing gases CO (20 ppm), methanol (20 ppm), acetone (20 ppm), and oxidizing gas NO (1 ppm) in dry air. It was demonstrated that the temperature of the maximum sensor response of ZnO/MO nanofibers toward reducing gases is primarily influenced by the binding energy of chemisorbed oxygen with the surface of the modifier's oxides.

View Article and Find Full Text PDF

Nanocrystalline TiO is a perspective semiconductor gas-sensing material due to its long-term stability of performance, but it is limited in application because of high electrical resistance. In this paper, a gas-sensing nanocomposite material with p-p heterojunction is introduced based on p-conducting Cr-doped TiO in combination with p-conducting CrO. Materials were synthesized via a single-step flame spray pyrolysis (FSP) technique and comprehensively studied by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, transition electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Raman spectroscopy.

View Article and Find Full Text PDF

Antibacterial Efficacy Comparison of Electrolytic and Reductive Silver Nanoparticles Against .

Antibiotics (Basel)

January 2025

Department of Physics Education, Faculty of Mathematics and Science, Universitas Negeri Yogyakarta, 1st Colombo St., Karangmalang, Sleman, Yogyakarta 55281, Indonesia.

The aim of this study was to develop an electrolysis system to produce silver nanoparticles free from toxic gases, as the most common reduction and electrolysis techniques produce nitrogen dioxide (NO) as a byproduct, which is harmful to human health. The new electrolysis system used two identical silver plate electrodes, replacing silver and carbon rods, and used water as the electrolyte instead of silver nitrate (AgNO) solution since AgNO is the source of NO. The electrolytic silver nanoparticles (ESNs) produced by the new system were characterized and compared with reductive silver nanoparticles (RSNs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!