MHC class II deficiency is a rare and fatal form of primary combined immunodeficiency caused by a lack of T-cell-dependent humoral and cellular immune response to foreign antigens, which can only be cured by allogenic stem cell transplantation. In the literature search, we identified 68 cases of HSCT in MHC class II deficiency in the last 14 yr. Pre- and post-transplant MHC class II deficiency is complicated by overwhelming viral infections, a high incidence of GvHD, and graft failure with a poor overall survival rate below 50%. We report an eight-month-old boy presenting with severe respiratory infections and chronic diarrhea, whose sister died at the age of four yr from septicemia. MHC II deficiency was caused by an RFXANK-mutation and treated successfully by 4/6 mismatched unrelated CBT after a myeloablative conditioning regimen based on anti-thymocyte globulin, busulfane, fludarabine, and cyclophosphamide. At present, our patient is well with full immune reconstitution 3(4/12) yr after CBT. CB may represent an alternative source of stem cells for children with MHC class II deficiency without a suitable donor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1399-3046.2010.01292.x | DOI Listing |
Am J Respir Cell Mol Biol
January 2025
Wayne State University, Division of Pulmonary, Critical Care and Sleep Medicine, Detroit, Michigan, United States;
Numerous chronic human disorders are associated with immune activation by obscure antigen(s). We identified a novel sarcoidosis-epitope (ChainA) by immunoscreening of a novel T7 phage library and confirmed an abundance of ChainA IgG-antibody in sarcoidosis. We tested whether ChainA epitope elicits immune responses through B-cell activation, plasma cell differentiation and antibody production.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Introduction: Human Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4) insufficiency caused by heterozygous germline mutations in is a complex immune dysregulation and immunodeficiency syndrome presenting with reduced penetrance and variable disease expressivity, suggesting the presence of disease modifiers that trigger the disease onset and severity. Various genetic and non-genetic potential triggers have been analyzed in CTLA-4 insufficiency cohorts, however, none of them have revealed a clear association to the disease. Multiple HLA haplotypes have been positively or negatively associated with various autoimmune diseases and inborn errors of immunity (IEI) due to the relevance of MHC in the strength of the T cell responses.
View Article and Find Full Text PDFCell Host Microbe
January 2025
Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110, USA. Electronic address:
Here, we explore the relationship between dietary fibers, colonic epithelium major histocompatibility complex class II (MHC-II) expression, and immune cell interactions in regulating susceptibility to Clostridioides difficile infection (CDI). We find that a low-fiber diet increases MHC-II expression in the colonic epithelium, which, in turn, worsens CDI by promoting the development of pathogenic CD4 intraepithelial lymphocytes (IELs). The influence of dietary fibers on MHC-II expression is mediated by its metabolic product, acetate, and its receptor, free fatty acid receptor 2 (FFAR2).
View Article and Find Full Text PDFClin Epigenetics
January 2025
School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.
View Article and Find Full Text PDFNat Cancer
January 2025
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
Cancer cells frequently rewire their metabolism to support proliferation and evade immune surveillance, but little is known about metabolic targets that could increase immune surveillance. Here we show a specific means of mitochondrial respiratory complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of either Ndufs4 or Ndufs6, but not other CI subunits, induces an immune-dependent growth attenuation in melanoma and breast cancer models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!