During the course of sepsis, heart and liver dysfunction occurs in 20-30 % of patients. Both septic cardiomyopathy and septic liver dysfunction have a high mortality and the underlying molecular pathophysiology remains unclear. The present study investigated changes in both cardiac and liver protein expression after cecal ligature and puncture (CLP) in a model of rat sepsis during a post-induction time course of 12, 24, and 48 hours. After approval by the local institutional review board, 62 male Wistar rats were investigated and assigned to three sham groups (n=16) and three sepsis groups (n=46). Rats of the sepsis groups and control groups were analyzed at specific time points after sepsis induction. Sepsis was induced by CLP and both heart and liver were removed after decapitation and prepared for proteomics. 2D-gel electrophoresis (2D-GE) and mass spectrometry (MS) as well as bioinformatic network pathway analysis (Ingenuity Pathways Analysis, IPA) were used to identify changes in protein expression between septic and non-septic samples. N=27 rats of the sepsis group died (mortality 59 %) and no rat of the sham group died. More than 1,100 proteins could be discriminated with the proteomic method in both organs, of which 12 and 13 proteins were significantly regulated in heart and liver, respectively. 82 % of the cardiac proteins could be associated with mitochondrial function. Both heart and liver proteins were primarily down-regulated in the course of sepsis. IPA associated the sets of differentially regulated proteins with proteins of heart and liver with compromised energy production. Sepsis induced significant alterations in the cardiac and liver proteome at 12, 24, and 48 hours after sepsis induction. Differentially regulated proteins of both organs mainly play a role in energy production. The diverse protein regulation indicates metabolic derangement and severely compromised cellular energy production following sepsis. Here, protein alterations may reflect septic organ dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.2174/092986610789909520DOI Listing

Publication Analysis

Top Keywords

heart liver
24
energy production
16
sepsis
12
production sepsis
12
liver
9
compromised energy
8
course sepsis
8
liver dysfunction
8
cardiac liver
8
protein expression
8

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a rare and potentially fatal condition characterized by progressive increases in blood pressure in the arteries of the lungs. Oral selexipag, approved by the Food and Drug Administration (FDA) in 2015 for the treatment of PAH, targets prostacyclin receptors on pulmonary arterial vascular smooth muscle and endothelial cells to improve blood flow through the lungs and reduce pulmonary vascular resistance. Oral selexipag is effective, but may be discontinued due to factors like side effects, emergency conditions, or inability to take oral medication, potentially leading to severe adverse events, such as rebound pulmonary hypertension and right heart failure.

View Article and Find Full Text PDF

Pharmacological validation of a novel exopolysaccharide from sp. 139 to effectively inhibit cytokine storms.

Heliyon

July 2024

NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.

With the rapid development of immunotherapy in recent years, cytokine storm has been recognized as a common adverse effect of immunotherapy. The emergence of COVID-19 has renewed global attention to it. The cytokine storm's inflammatory response results in infiltration of large amounts of monocytes/macrophages in the lungs, heart, spleen, lymph nodes, and kidneys.

View Article and Find Full Text PDF

Introduction: Organ transplant recipients face a substantial risk of developing posttransplant lymphoproliferative disorders (PTLD). In over 90% of cases with B-cell PTLD following solid organ transplantation, the Epstein-Barr virus (EBV) genome is promptly identified, usually within the initial year. A continuing discussion revolves around the efficacy of antiviral prophylaxis in mitigating the incidence of PTLD in solid organ transplant (SOT) patients.

View Article and Find Full Text PDF

Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!