Occlusion or blockage of silicone shunts utilized in the treatment of hydrocephalus is a major challenge that is currently addressed by multiple shunt replacements. Shunt occlusion is caused by the adhesion and proliferation of reactive cells, such as glial and vascular cells, into the lumen of the catheter and on valve components. This in vitro study describes how the adhesive behavior of four human cell types on poly(dimethylsiloxane) (PDMS) surfaces can be suppressed by functionalization with trypsin, a proteolytic enzyme. The covalently conjugated trypsin retained its proteolytic activity and acted in a dose-dependent manner. Trypsin-modified PDMS surfaces supported significantly lower adhesion of normal human astrocytes, human microglia, human dermal fibroblasts, and human umbilical vein endothelial cells compared to unmodified PDMS surfaces (p < 0.0001). Immunofluorescence imaging of cellular fibronectin and quantitative adsorption experiments with serum components indicated that the PDMS surfaces immobilized with trypsin inhibited surface remodeling by all cell types and resisted protein adsorption. The impact of this work lies in the recognition that the well-known proteolytic characteristics of trypsin can be harnessed by covalent surface immobilization to suppress cell adhesion and protein adsorption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924170 | PMC |
http://dx.doi.org/10.1021/la903441u | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Hydrogels are popular materials for desalination and can significantly reduce the vaporization enthalpy of water; however, there are few reports on hydrogels with a controllable multilevel structural design for water evaporation. Herein, a calcium alginate and traditional Chinese ink-based evaporator (CIE) are proposed and fabricated using directed freezing technology to construct radial channels, followed by freeze-drying and physical cross-linking. Because of the squeezing of ice crystals and the shaping effect of the PDMS template, the prepared evaporator exhibits a sea-urchin-shaped highly geometrical centrosymmetric structure with numerous multilevel pore channels, which promotes the rapid transport of water under different solar incidence angles as the sun rotates as well as overcomes the structural shrinkage of the hydrogel caused by insufficient water supply.
View Article and Find Full Text PDFExtracorporeal Membrane Oxygenation (ECMO) serves as a crucial intervention for patients with severe pulmonary dysfunction by facilitating oxygenation and carbon dioxide removal. While traditional ECMO systems are effective, their large priming volumes and significant blood-contacting surface areas can lead to complications, particularly in neonates and pediatric patients. Microfluidic ECMO systems offer a promising alternative by miniaturizing the ECMO technology, reducing blood volume requirements, and minimizing device surface area to improve safety and efficiency.
View Article and Find Full Text PDFDes Monomers Polym
January 2025
Department of Physics Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia.
Polydimethylsiloxane (PDMS) is a polymer that can be used as a vitreous substitute. To fulfill the need for PDMS on a large scale, synthesis of PDMS in a large number is also needed. Therefore, intensive research is needed to produce PDMS in large quantities.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address:
Background: Digital recombinase polymerase amplification (dRPA) is an effective tool for the absolute quantification of nucleic acids and the detection of rare mutations. Due to the high viscosity or other physical properties of the reagent, this can compromise the accuracy and reproducibility of detection results, which limits the broader adoption and practical application of this technology. In this study, we developed an asymmetric contact angle digital isothermal detection (ACA-DID) chip and optimized the ACA-DID chip structure to achieve rapid digital recombinase polymerase amplification.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
Silicone rubber (SiR) has a wide range of medical applications, but it lacks antimicrobial properties, leading to potential infection issues with related implants or medical devices. Most studies focus on adding anti-bacterial agents or surface modification, which usually result in composites with anti-bacterial properties, rather than synthesizing SiR with intrinsically antimicrobial performances. To tackle this issue, a double substituted bornyl-siloxane crosslinker (BC) is designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!