Objective: To investigate the capacity of ADAM15, a disintegrin metalloproteinase that is up-regulated in osteoarthritic (OA) cartilage, to protect chondrocytes against apoptosis induced by growth factor deprivation and genotoxic stress.
Methods: Caspase 3/7 activity was determined in primary OA and ADAM15-transfected T/C28a4 chondrocytes upon exposure to the DNA-damaging agent camptothecin or serum withdrawal. Camptothecin-induced cytotoxicity was determined by measuring cellular ATP content. (Anti-)apoptotic proteins were analyzed by immunoblotting, and levels of messenger RNA (mRNA) for X-linked inhibitor of apoptosis (XIAP) were determined using real-time polymerase chain reaction. RNA interference was applied for down-regulation of ADAM15 and XIAP expression. Immunohistochemistry analysis of normal and OA cartilage samples was performed using XIAP- and ADAM15-specific antibodies.
Results: ADAM15-transfected chondrocytes cultured on a collagen matrix displayed significantly reduced caspase 3/7 activity upon serum or intermittent matrix withdrawal, compared with vector-transfected control cells. Apoptosis induction by camptothecin exposure also led to significantly elevated caspase 3/7 activity and reduced cell viability of the vector-transfected compared with ADAM15-transfected chondrocytes. Increased levels of activated caspase 3 and cleaved poly(ADP-ribose) polymerase were detected in the vector controls. XIAP, an inhibitor of activated caspase 3, was significantly up-regulated ( approximately 3-fold) at the protein and mRNA levels in ADAM15-transfected chondrocytes upon camptothecin treatment. Specific down-regulation of either ADAM15 or XIAP in OA chondrocytes led to significant sensitization to camptothecin-induced caspase 3/7 activity. Immunohistochemical analysis revealed low to moderate XIAP expression in normal specimens and markedly increased XIAP staining, colocalizing with ADAM15, in OA cartilage.
Conclusion: ADAM15 conveys antiapoptotic properties to OA chondrocytes that might sustain their potential to better resist the influence of death-inducing stimuli under pathophysiologic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.27387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!