To establish a strategy for the comprehensive identification of human N-myristoylated proteins, the susceptibility of human cDNA clones to protein N-myristoylation was evaluated by metabolic labeling and MS analyses of proteins expressed in an insect cell-free protein synthesis system. One-hundred-and-forty-one cDNA clones with N-terminal Met-Gly motifs were selected as potential candidates from approximately 2000 Kazusa ORFeome project human cDNA clones, and their susceptibility to protein N-myristoylation was evaluated using fusion proteins, in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. As a result, the products of 29 out of 141 cDNA clones were found to be effectively N-myristoylated. The metabolic labeling experiments both in an insect cell-free protein synthesis system and in the transfected COS-1 cells using full-length cDNA revealed that 27 out of 29 proteins were in fact N-myristoylated. Database searches with these 27 cDNA clones revealed that 18 out of 27 proteins are novel N-myristoylated proteins that have not been reported previously to be N-myristoylated, indicating that this strategy is useful for the comprehensive identification of human N-myristoylated proteins from human cDNA resources.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200900783DOI Listing

Publication Analysis

Top Keywords

cdna clones
20
n-myristoylated proteins
16
strategy comprehensive
12
comprehensive identification
12
identification human
12
human n-myristoylated
12
insect cell-free
12
cell-free protein
12
protein synthesis
12
synthesis system
12

Similar Publications

Patients suffering epilepsy caused by the gain-of-function mutants of the hKCNT1 potassium channels are drug refractory. In this study, we cloned a novel human KCNT1B channel isoform using the brain cDNA library and conducted patch-clamp and molecular docking analyses to characterize the pharmacological properties of the hKCNT1B channel using thirteen drugs. Among cinchona alkaloids, we found that hydroquinine exerted the strongest blocking effect on the hKCNT1B channel, especially the F313L mutant.

View Article and Find Full Text PDF

, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.

View Article and Find Full Text PDF

We previously isolated a cDNA clone for galactosylceramide expression factor 1, which is the rat homologue of hepatocyte-growth-factor-regulated tyrosine kinase substrate (HGS) and induces galactosylceramide expression and morphological changes in COS-7 cells, and reported that overexpression of HGS induced morphological changes in canine kidney epithelial MDCK cells. HGS is a component of the endosomal sorting complexes required for transport machinery that mediates endosomal multivesicle body formation. In this study, the overexpression of HGS induced epithelial-mesenchymal transition and caused transformation in MDCK cells, whereas the overexpression of a coiled-coil domain of HGS inhibited induction of epithelial-mesenchymal transition by HGF stimulation.

View Article and Find Full Text PDF

The determinate inflorescence trait of L. is associated with various desirable agricultural characteristics. ( and ), which encode the transcription factor have previously been identified as candidate genes controlling this trait through map-based cloning.

View Article and Find Full Text PDF

Rapid Generation of Reverse Genetics Systems for Coronavirus Research and High-Throughput Antiviral Screening Using Gibson DNA Assembly.

J Med Virol

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Coronaviruses (CoVs) pose a significant threat to human health, as demonstrated by the COVID-19 pandemic. The large size of the CoV genome (around 30 kb) represents a major obstacle to the development of reverse genetics systems, which are invaluable for basic research and antiviral drug screening. In this study, we established a rapid and convenient method for generating reverse genetic systems for various CoVs using a bacterial artificial chromosome (BAC) vector and Gibson DNA assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!