Molecular systematics: A synthesis of the common methods and the state of knowledge.

Cell Mol Biol Lett

Department of Zoology, The Natural History Museum, London, UK.

Published: June 2010

The comparative and evolutionary analysis of molecular data has allowed researchers to tackle biological questions that have long remained unresolved. The evolution of DNA and amino acid sequences can now be modeled accurately enough that the information conveyed can be used to reconstruct the past. The methods to infer phylogeny (the pattern of historical relationships among lineages of organisms and/or sequences) range from the simplest, based on parsimony, to more sophisticated and highly parametric ones based on likelihood and Bayesian approaches. In general, molecular systematics provides a powerful statistical framework for hypothesis testing and the estimation of evolutionary processes, including the estimation of divergence times among taxa. The field of molecular systematics has experienced a revolution in recent years, and, although there are still methodological problems and pitfalls, it has become an essential tool for the study of evolutionary patterns and processes at different levels of biological organization. This review aims to present a brief synthesis of the approaches and methodologies that are most widely used in the field of molecular systematics today, as well as indications of future trends and state-of-the-art approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275913PMC
http://dx.doi.org/10.2478/s11658-010-0010-8DOI Listing

Publication Analysis

Top Keywords

molecular systematics
16
field molecular
8
molecular
5
systematics synthesis
4
synthesis common
4
common methods
4
methods state
4
state knowledge
4
knowledge comparative
4
comparative evolutionary
4

Similar Publications

Background: TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan.

View Article and Find Full Text PDF

Topological design of π electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically show antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a class of ferromagnetic quantum spin chains, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the one-dimensional limit, but also establishes a long-sought-after carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics.

View Article and Find Full Text PDF

Functional evaluation and clinical classification of BRCA2 variants.

Nature

January 2025

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.

Germline BRCA2 loss-of function variants, which can be identified through clinical genetic testing, predispose to several cancers. However, variants of uncertain significance limit the clinical utility of test results. Thus, there is a need for functional characterization and clinical classification of all BRCA2 variants to facilitate the clinical management of individuals with these variants.

View Article and Find Full Text PDF

Clinical decision-making is driven by multimodal data, including clinical notes and pathological characteristics. Artificial intelligence approaches that can effectively integrate multimodal data hold significant promise in advancing clinical care. However, the scarcity of well-annotated multimodal datasets in clinical settings has hindered the development of useful models.

View Article and Find Full Text PDF

Sequencing-based genetic tests have uncovered a vast array of BRCA2 sequence variants. Owing to limited clinical, familial and epidemiological data, thousands of variants are considered to be variants of uncertain significance (VUS). Here we have utilized CRISPR-Cas9-based saturation genome editing in a humanized mouse embryonic stem cell line to determine the functional effect of VUS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!