This study analyzed whether therapy with CAMEL, an antimicrobial peptide (KWKLFKKIGAVLKVL), possess anticancer benefits. Although the peptide was cytotoxic for all the cell lines tested, it did not cause hemolysis, which suggests that CAMEL does not damage cell membranes. After cellular internalization, CAMEL localized to mitochondria and lowered the mitochondrial potential, resulting in the organelles' swelling, a decrease in cellular ATP level and, finally, cellular breakdown. High mobility group box 1 (HMGB1) protein, a necrotic death marker, was shown to be released from cells treated with CAMEL. Growth of B16-F10 melanoma tumors was clearly restrained after injections with CAMEL and could be kept in check throughout the period of peptide administration. However, if therapy was stopped, tumors started to grow again 3-4 days later. To reduce tumor volume and block tumor relapse, a combined therapy was required involving CAMEL and plasmid DNA carrying the interleukin-12 (IL-12) gene. The two therapeutic agents used in combination (a series of CAMEL injections first, followed by daily administration of plasmid DNA) delayed tumor growth and extended survival of treated animals in a statistically significant manner. Complete tumor regression was found in 60% of cases.

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.2010.58DOI Listing

Publication Analysis

Top Keywords

camel
8
plasmid dna
8
anticancer effects
4
effects camel
4
peptide
4
camel peptide
4
peptide study
4
study analyzed
4
analyzed therapy
4
therapy camel
4

Similar Publications

Middle East respiratory syndrome coronavirus (MERS-CoV) is an important zoonotic pathogen. The aim of this paper is to report one polymerase chain reaction (PCR)-positive case of MERS-CoV in a 27-year-old man who was involved in a nationwide longitudinal surveillance study of certain zoonotic diseases in Jordan including MERS-CoV. Whole-blood and nasal swab samples were collected from the man and five camels in the vicinity of his living area.

View Article and Find Full Text PDF

Background: Faecal egg counts (FECs) are essential for diagnosing helminth infections and guiding treatment decisions. For camels, no evaluations of coproscopic methods regarding precision, sensitivity and correlation between individual and pooled faecal samples are currently available.

Methods: Here, 410 camel faecal samples were collected in 2022 from South Darfur State, Sudan, and analysed to compare the semi-quantitative flotation, McMaster and Mini-FLOTAC methods in terms of precision, sensitivity, inter-rater reliability and helminth egg count correlations, as well as the effects of pooling samples.

View Article and Find Full Text PDF

Improved Functionality, Quality, and Shelf Life of -Type Camel Sausage Fortified with Spirulina as a Natural Ingredient.

Foods

December 2024

Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain.

The objective of the present work was to examine the effect of incorporating spirulina powder (SP) in -type sausages made exclusively with camel meat, as well as to evaluate its physicochemical, microbiological, and sensory quality attributes and its prebiotic potential. The final purpose was to offer an innovative meat product to increase camel meat consumption. Several innovative fresh sausage formulations were developed using SP (00, 100, 250, and 500 mg/kg) and stored under vacuum conditions with refrigeration at 1 ± 1 °C for 35 days.

View Article and Find Full Text PDF

Camels () are seasonal short-day breeders, regulated by photoperiod and melatonin secretion. However, no studies have explored melatonin levels in camel seminal plasma or their relationship with testosterone, age, or climatic factors, nor is it known whether melatonin receptors exist in camel spermatozoa to respond to seminal melatonin. This study aimed to analyze melatonin levels in camel seminal plasma and its specific receptors in spermatozoa.

View Article and Find Full Text PDF

Elucidating the effect of camel α-lactalbumin in modulating obesity-related metabolic disorders in an obese rat model.

Int J Biol Macromol

January 2025

Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen 13000, Algeria. Electronic address:

Camel α-Lactalbumin (α-LAC) has been shown to exert bioactivities for Reactive oxygen species (ROS) scavenging and anti-inflammation, showing the ability to treat obesity-related metabolic disorders. Herein, we present a novel process to purify α-LAC in a single chromatographic step from camel whey in a flow-through format. We also demonstrate the role of α-LAC modulation strategies for the treatment of obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!