The mitotic (or spindle assembly) checkpoint system ensures accurate segregation of chromosomes by delaying anaphase until all chromosomes are correctly attached to the mitotic spindle. This system acts by inhibiting the activity of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase to target securin for degradation. APC/C is inhibited by a mitotic checkpoint complex (MCC) composed of BubR1, Bub3, Mad2, and Cdc20. The molecular mechanisms of the inactivation of the mitotic checkpoint, including the release of APC/C from inhibition, remain obscure. It has been reported that polyubiquitylation by the APC/C is required for the inactivation of the mitotic checkpoint [Reddy SK, Rape M, Margansky WA, Kirschner MW (2007) Nature, 446:921-924]. We confirmed the involvement of polyubiquitylation, but found that another process, which requires ATP cleavage at the beta-gamma position (as opposed to alpha-beta bond scission involved in ubiquitylation), is essential for the release of APC/C from checkpoint inhibition. ATP (beta-gamma) cleavage is required both for the dissociation of MCC components from APC/C and for the disassembly of free MCC, whereas polyubiquitylation is involved only in the former process. We find that the requirement for ATP (beta-gamma) cleavage is not due to the involvement of the 26S proteasome and that the phenomena observed are not due to sustained activity of protein kinase Cdk1/cyclin B, caused by inhibition of the degradation of cyclin B. Thus, some other energy-consuming process is needed for the inactivation of the mitotic checkpoint.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851749PMC
http://dx.doi.org/10.1073/pnas.1001875107DOI Listing

Publication Analysis

Top Keywords

mitotic checkpoint
20
inactivation mitotic
12
anaphase-promoting complex/cyclosome
8
mitotic spindle
8
release apc/c
8
atp beta-gamma
8
beta-gamma cleavage
8
mitotic
7
checkpoint
7
apc/c
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!