The p65 subunit of NF-kappaB binds to PGC-1alpha, linking inflammation and metabolic disturbances in cardiac cells.

Cardiovasc Res

Department of Pharmacology and Therapeutic Chemistry, IBUB (Institut de Biomedicina de Universitat de Barcelona)-Instituto de Salud Carlos III, Faculty of Pharmacy, University of Barcelona, Diagonal 643, Barcelona E-08028, Spain.

Published: August 2010

Aims: Nuclear factor-kappaB (NF-kappaB) is a transcription factor induced by a wide range of stimuli, including hyperglycaemia and pro-inflammatory cytokines. It is associated with cardiac hypertrophy and heart failure. It was previously reported that the NF-kappaB-mediated inhibition of proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) might explain the shift in glucose metabolism during cardiac pathological processes induced by pro-inflammatory stimuli, although the specific mechanisms remain to be elucidated. We addressed the specific mechanisms by which exposure to tumour necrosis factor-alpha (TNF-alpha) results in PGC-1alpha down-regulation in cardiac cells and, as a consequence, in the metabolic dysregulation that underlies heart dysfunction and failure.

Methods And Results: By using coimmunoprecipitation studies, we report for the first time that the p65 subunit of NF-kappaB is constitutively bound to PGC-1alpha in human cardiac cells and also in mouse heart, and that NF-kappaB activation by TNF-alpha exposure increases this binding. Overexpression and gene silencing analyses demonstrated that the main factor limiting the degree of this association is p65, because only the modulation of this protein modified the physical interaction. Our data show that the increased physical interaction between p65 and PGC-1alpha after NF-kappaB activation is responsible for the reduction in PGC-1alpha expression and subsequent dysregulation of glucose oxidation.

Conclusion: On the basis of these data, we propose that p65 directly represses PGC-1alpha activity in cardiac cells, thereby leading to a reduction in pyruvate dehydrogenase kinase 4 (PDK4) expression and the subsequent increase in glucose oxidation observed during the proinflammatory state.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvq080DOI Listing

Publication Analysis

Top Keywords

cardiac cells
16
p65 subunit
8
subunit nf-kappab
8
specific mechanisms
8
nf-kappab activation
8
physical interaction
8
expression subsequent
8
pgc-1alpha
7
cardiac
6
p65
5

Similar Publications

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.

View Article and Find Full Text PDF

The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!