Endothelial nitric oxide synthase activity is inhibited by the plasma membrane calcium ATPase in human endothelial cells.

Cardiovasc Res

Molecular Pharmacology Group, Department of Pharmacy, Research Institute in Healthcare Sciences, School of Applied Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1SB, UK.

Published: August 2010

AI Article Synopsis

  • The study investigates how the enzyme eNOS, which produces nitric oxide (NO) in blood vessels, is regulated by its interaction with the plasma membrane calcium ATPase (PMCA).
  • The researchers found that PMCA interacts with eNOS in human endothelial cells, and this interaction affects eNOS phosphorylation, which is crucial for its activity.
  • Results suggest that PMCA acts as a negative regulator of eNOS, leading to decreased NO production, which has implications for cardiovascular signaling.

Article Abstract

Aims: Nitric oxide (NO) plays a pivotal role in the regulation of cardiovascular physiology. Endothelial NO is mainly produced by the endothelial nitric oxide synthase (eNOS) enzyme. eNOS enzymatic activity is regulated at several levels, including Ca(2+)/calmodulin binding and the interaction of eNOS with associated proteins. There is emerging evidence indicating a role for the plasma membrane calcium ATPase (PMCA) as a negative regulator of Ca(2+)/calmodulin-dependent signal transduction pathways via its interaction with partner proteins. The aim of our study was to investigate the possibility that the activity of eNOS is regulated through its association with endothelial PMCA.

Methods And Results: We show here a novel interaction between endogenous eNOS and PMCA in human primary endothelial cells. The interaction domains were located to the region 735-934 of eNOS and the catalytic domain of PMCA. Ectopic expression of PMCA in endothelial cells resulted in an increase in phosphorylation of the residue Thr-495 of endogenous eNOS. However, disruption of the PMCA-eNOS interaction by expression of the PMCA interaction domain significantly reversed the PMCA-mediated effect on eNOS phosphorylation. These results suggest that eNOS activity is negatively regulated via interaction with PMCA. Moreover, NO production by endothelial cells was significantly reduced by ectopic expression of PMCA.

Conclusion: Our results show strong evidence for a novel functional interaction between endogenous PMCA and eNOS in endothelial cells, suggesting a role for endothelial PMCA as a negative modulator of eNOS activity, and, therefore, NO-dependent signal transduction pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904661PMC
http://dx.doi.org/10.1093/cvr/cvq077DOI Listing

Publication Analysis

Top Keywords

endothelial cells
20
nitric oxide
12
enos
11
endothelial
10
endothelial nitric
8
oxide synthase
8
plasma membrane
8
membrane calcium
8
calcium atpase
8
interaction
8

Similar Publications

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

Sex Differences in Aortic Valve Inflammation and Remodeling in Chronic Severe Aortic Regurgitation.

Am J Physiol Heart Circ Physiol

January 2025

Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.

Aortic regurgitation (AR) is more prevalent in male, although cellular and molecular mechanisms underlying the sex differences in prevalence and pathophysiology are unknown. This study evaluates the impact of sex on aortic valve (AV) inflammation and remodeling as well as the cellular differences in valvular interstitial cells (VICs) and valvular endothelial cells (VECs) in patients with AR. A total of 144 patients (27.

View Article and Find Full Text PDF

Protocol for isolating and purifying murine liver sinusoidal endothelial cells for in vitro culture and functional assays.

STAR Protoc

January 2025

Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. Electronic address:

Liver sinusoidal endothelial cells (LSECs) line the liver sinusoids and play a crucial role in liver function. Isolating LSECs is beneficial for their functional evaluation in vitro. Here, we provide a protocol for obtaining purified LSECs from mice via gradient centrifugation and magnetic cell sorting (MACS), yielding cells suitable for culture and downstream analyses.

View Article and Find Full Text PDF

Dengue virus (DENV) poses a considerable threat to public health on a global scale, since about two-thirds of the world's population is currently at risk of contracting this arbovirus. Being transmitted by mosquitoes, this virus is associated with a range of illnesses and a small percentage of infected individuals might suffer from severe vascular leakage. This leakage leads to hypovolemic shock syndrome, generally known as dengue shock syndrome, organ failure, and bleeding complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!