Dopamine/cAMP signaling has been reported to mediate behavioral responses related to drug addiction. It also modulates the plasticity and firing properties of medium spiny neurons (MSNs) in the nucleus accumbens (NAc), although the effects of cAMP signaling on the resting membrane potential (RMP) of MSNs has not been specifically defined. In this study, activation of dopamine D1-like receptors (D1Rs) by SKF-38393 elicited membrane depolarization and inward currents in MSNs from the NAc core of 14-17 day-old mice. Similar results were obtained following stimulation of adenylyl cyclase (AC) activity with forskolin or application of exogenous cAMP. Forskolin occluded SKF-38393's effects, thus indicating that D1R action is mediated by AC/cAMP signaling. Accordingly, AC blockade by SQ22536 significantly inhibited the responses to SKF-38393. Effects elicited by D1R stimulation or increased cAMP levels were unaffected by protein kinase A (PKA) or protein kinase C (PKC) blockade and were not mimicked by the Epac agonist, 8CPT-2Me-cAMP. Responses to forskolin were also not significantly modified by cyclic nucleotide-gated (CNG) channel blockade. Forskolin-induced membrane depolarization was associated with increased membrane input resistance. Voltage-clamp experiments revealed that forskolin and SKF-38393 effects were due to inhibition of resting K(+) currents exhibiting inward rectification at hyperpolarized potentials and a reversal potential (around -90 mV) that shifted with the extracellular K(+) concentration. Forskolin and D1R agonist effects were abolished by the inward rectifier K(+) (Kir)-channel blocker, BaCl(2). Collectively, these data suggest that stimulation of postsynaptic D1Rs in MSNs of the NAc core causes membrane depolarization by inhibiting Kir currents. This effect is mediated by AC/cAMP signaling but it is independent on PKA, PKC, Epac and CNG channel activation, suggesting that it may stem from cAMP's direct interaction with Kir channels. D1R/cAMP-mediated excitatory effects may influence the generation of output signals from MSNs by facilitating their transition from the quiescent down-state to the functionally active up-state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2010.02.075DOI Listing

Publication Analysis

Top Keywords

protein kinase
12
membrane depolarization
12
dopamine d1-like
8
medium spiny
8
spiny neurons
8
nucleus accumbens
8
msns nac
8
nac core
8
mediated ac/camp
8
ac/camp signaling
8

Similar Publications

The prognosis of B cell acute lymphoblastic leukemia (B-ALL) is poor, primarily due to drug resistance and relapse. Ga15, encoded by GNA15, belongs to the G protein family, with G protein-coupled receptors playing a crucial role in multiple biological process. GNA15 has been reported to be involved in various malignancies; however, its potential role in B-ALL remain unknown.

View Article and Find Full Text PDF

The role of mTOR activation in steroid-resistant asthma: insights from particulate matter-induced mouse model and patient studies.

Inflamm Res

January 2025

Institute of Allergy and Clinical Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.

Particulate matter (PM) exposure has been proposed as one of the causes of steroid resistance. However, studies investigating this using patient samples or animals are still lacking. Therefore, in this study, we aimed to investigate the changes in cytokines and mTOR (mammalian target of rapamycin) activation in patients with steroid resistant asthma and the role of mTOR in a mouse model of steroid resistant asthma induced by PM.

View Article and Find Full Text PDF

Mutations that increase LRRK2 kinase activity have been linked to Parkinson's disease and Crohn's disease. LRRK2 is also activated by lysosome damage. However, the endogenous cellular mechanisms that control LRRK2 kinase activity are not well understood.

View Article and Find Full Text PDF

Classical cell cycle kinase limits tubulin polyglutamylation and cilium stability.

J Cell Biol

February 2025

Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA.

Tubulin polyglutamylation is essential for maintaining cilium stability and function, and defective tubulin polyglutamylation is associated with ciliopathies. However, the regulatory mechanism underlying proper axonemal polyglutamylation remains unclear. He et al.

View Article and Find Full Text PDF

Mutations disrupting the kinase domain of IKKα lead to immunodeficiency and immune dysregulation in humans.

J Exp Med

February 2025

Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France.

IKKα, encoded by CHUK, is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. The absence of IKKα causes fetal encasement syndrome in humans, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and causes combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!