A tetravalent dengue vaccine that can protect against all four serotypes of dengue viruses is a global priority. The host-receptor binding, multiple neutralizing epitope-containing carboxy-terminal region of the dengue envelope protein, known as domain III (EDIII), has emerged as a promising subunit vaccine antigen. One strategy to develop a tetravalent dengue subunit vaccine envisages mixing recombinant EDIIIs, corresponding to the four dengue virus serotypes. Towards this objective, a recombinant clone of the methylotrophic yeast Pichia pastoris, harboring the EDIII gene of dengue virus type 2 (EDIII-2) for its intracellular expression, was created. Recombinant EDIII-2 protein, expressed by this clone was purified to near homogeneity by affinity chromatography, with final yields of >50mg/l culture. Groups of Balb/c mice were immunized with this protein, separately formulated in two adjuvants, alum and montanide ISA 720. The EDIII-2 antigen, formulated in either adjuvant, elicited high levels of neutralizing antibodies to dengue virus type 2 in mice as analyzed by Plaque Reduction Neutralization Test (PRNT). This study demonstrates the feasibility of using P. pastoris to produce EDIII antigens capable of eliciting potent virus-neutralizing antibodies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2010.03.002DOI Listing

Publication Analysis

Top Keywords

dengue virus
16
virus type
12
dengue
8
domain iii
8
virus-neutralizing antibodies
8
tetravalent dengue
8
subunit vaccine
8
pichia pastoris-expressed
4
pastoris-expressed dengue
4
virus
4

Similar Publications

T cells have been identified as correlates of protection in viral infections. However, the level of vaccine-induced T cells needed and the extent to which they alone can control acute viral infection in humans remain uncertain. Here we conducted a double-blind, randomized controlled trial involving vaccination and challenge in 33 adult human volunteers, using the live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE/YF17D) vaccines.

View Article and Find Full Text PDF

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology.

PLoS Negl Trop Dis

January 2025

Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.

View Article and Find Full Text PDF

Background: Dengue virus, a major global health threat, consists of four serotypes (DENV1-4) that cause a range of clinical manifestations from mild to severe and potentially fatal disease.

Methods: This study, based on 19 years of data from the Pediatric Dengue Cohort Study and Pediatric Dengue Hospital-based Study in Managua, Nicaragua, investigates the relationship of serotype and immune status with dengue severity. Dengue cases were confirmed by molecular, serological, and/or virological methods, and study participants 6 months to 17 years old were followed during their hospital stay or as ambulatory patients.

View Article and Find Full Text PDF

Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.

View Article and Find Full Text PDF

Spatiotemporal analysis of mosquito-borne infections and mosquito vectors in mainland Portugal.

BMC Infect Dis

January 2025

EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, nº 135, Porto, 4050 - 600, Portugal.

Background: The incidence of mosquito-borne infections has increased worldwide. Mainland Portugal's characteristics might favour the (re)emergence of mosquito-borne diseases. This study aimed to characterize the spatial distribution of vectors and notification rates of imported cases of mosquito-borne infections in mainland Portugal and demarcate the areas where these geographies overlap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!