Background: Ethambutol is used for the treatment of tuberculosis in cases where there is isoniazid resistance. We examined the emergence of drug resistance to ethambutol monotherapy in pharmacokinetic-pharmacodynamic studies of a hollow-fiber system.
Methods: Dose-effect and dose-scheduling studies were performed with ethambutol and log-phase growth Mycobacterium tuberculosis to identify exposures and schedules linked to optimal kill and resistance suppression. In one study, after 7 days of daily ethambutol, 300 mg isoniazid per day was administered to each system to determine its early bactericidal activity.
Results: Efflux-pump blockage reduced the mutation frequency to ethambutol 64-fold. In dose-effect studies, ethambutol had a maximal early bactericidal activity of 0.22 log10 colony-forming units/mL/day, as is encountered in patients. By day 7, resistance to both ethambutol and isoniazid had increased. Previous exposure to ethambutol halted isoniazid early bactericidal activity. Daily therapy, as opposed to more intermittent therapy, was associated with the least proportion of efflux-pump-driven resistance, consistent with a time-driven effect. Microbial kill was best explained by the ratio of area under the concentration-time curve to minimum inhibitory concentration (r2 = 0.90).
Conclusion: The induction of an efflux pump that reduces the effect of multiple drugs provides an alternative pathway to sequential acquisition of mutations in the development of multiple drug resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838947 | PMC |
http://dx.doi.org/10.1086/651377 | DOI Listing |
Sci Rep
December 2024
Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance.
View Article and Find Full Text PDFDrugs
December 2024
The Aurum Institute, Parktown, South Africa.
Tuberculosis (TB) is the leading cause of death from a single infectious agent. The burden is highest in some low- and middle-income countries. One-quarter of the world's population is estimated to have been infected with TB, which is the seedbed for progressing from TB infection to the deadly and contagious disease itself.
View Article and Find Full Text PDFPlant Foods Hum Nutr
December 2024
Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.
The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.
View Article and Find Full Text PDFProstate Cancer Prostatic Dis
December 2024
Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China.
Background: Metastatic prostate cancer (PCa) has much lower survival and ultimately develops castration resistance, which expects novel targets and therapeutic approaches. As a result of iron-dependent lipid peroxidation, ferroptosis triggers programmed cell death and has been associated with castration-resistant prostate cancer (CRPC).
Subjects: To better understand how ferroptosis can be used to treat CRPC, we reviewed the following: First, ferroptosis mechanisms and characteristics.
Commun Biol
December 2024
Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!