The rates of gas-phase elimination of trimethyl orthovalerate and trimethyl orthochloroacetate have been determined in a static system, and the reaction Pyrex vessels have been deactivated with the product of decomposition of allyl bromide. The reactions are unimolecular and follow a first-order rate law. The working temperature and pressure ranges were 313-410 degrees C and 40-140 Torr, respectively. The rate coefficients for the homogeneous reaction are given by the following Arrhenius expressions: for trimethyl orthovalerate: log k (s(-1)) = [(14.00 +/- 0.28) - (196.3 +/- 1.7) (kJ/mol)] (2.303RT)(-1), (r = 0.9999); and for trimethyl orthochloroacetate: log k (s(-1)) = [(13.54 +/- 0.21) - (209.3 +/- 1.9)(kJ/mol)](2.303RT)(-1), (r = 0.9998). The theoretical calculations of the kinetic and thermodynamic parameters were carried out by using B3LYP, B3PW91, MPW1PW91, and PBEPBE methods. The theoretical results show reasonably good agreement with the experimental energy and enthalpy of activation values when using the B3PW91/6-31++G** method for trimethyl orthovalerate and PBEPBE /6-31++G** for trimethyl orthochloroacetate. These calculations suggest a molecular concerted nonsynchronous mechanism where C-OCH(3) bond polarization, in the sense C(delta+)...(delta-)OCH(3), is the rate-determining step. The increase in electron density of the oxygen atom at OCH(3) eases the abstraction of the hydrogen of the adjacent C-H bond in a four-membered cyclic structure to give methanol and the corresponding unsaturated ketal. The electron-donor substituent enhances decomposition rates by stabilizing the positive charge developing in the transition state at the carbon bearing the three methoxy groups, whereas the electron-withdrawing substituent destabilizes this charge, thus retarding the reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp1005296 | DOI Listing |
J Phys Chem A
April 2010
Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela.
The rates of gas-phase elimination of trimethyl orthovalerate and trimethyl orthochloroacetate have been determined in a static system, and the reaction Pyrex vessels have been deactivated with the product of decomposition of allyl bromide. The reactions are unimolecular and follow a first-order rate law. The working temperature and pressure ranges were 313-410 degrees C and 40-140 Torr, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!