The synthesis of a series of substituted phenanthridines by photostimulated C-C cyclization of anions from N-(ortho-halobenzyl)arylamines has been found to proceed in very good to excellent yields (79-95%) in liquid ammonia and in DMSO. The N-(ortho-halobenzyl)arylamines are obtained in good to very good isolated yields (44-85%) by nucleophilic substitution of ortho-halobenzylchlorides with different arylamines. The reaction of the anions of a diverse set of N-(ortho-halobenzyl)arylamines was studied, and the methodology was extended to the synthesis of trispheridine, a natural product, in very good yield. In order to explain the regiochemical outcome of these reactions, a theoretical analysis was performed with DFT methods and the B3LYP functional.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo9025918DOI Listing

Publication Analysis

Top Keywords

anions n-ortho-halobenzylarylamines
8
electron-transfer-mediated synthesis
4
synthesis phenanthridines
4
phenanthridines intramolecular
4
intramolecular arylation
4
arylation anions
4
n-ortho-halobenzylarylamines
4
n-ortho-halobenzylarylamines regiochemical
4
regiochemical mechanistic
4
mechanistic analysis
4

Similar Publications

Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle.

Nat Commun

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.

View Article and Find Full Text PDF

Ultrasensitive Flexible NO Sensors with Remote-Controllable ADC-Electropolymerized Conducting Polymers on Plastic.

ACS Nano

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Alternating- and direct-current (ADC) bipolar electropolymerization (EP) offers an efficient and scalable approach for the lateral synthesis of conjugated macromolecules, enabling the simultaneous polymerization and deposition of large conducting polymer films with intriguing fractal-like ramified topographies onto arbitrary insulating substrates under remote control. In this study, we presented the remote synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT):anion sensing films on a plastic substrate, aimed at their use in flexible nitrogen dioxide (NO) gas sensors. Notably, the PEDOT:ClO films exhibited excellent gas-sensing characteristics, with a sensitivity of 54.

View Article and Find Full Text PDF

In vitro models that can faithfully replicate critical aspects of kidney tubule function such as directional drug transport are in high demand in pharmacology and toxicology. Accordingly, development and validation of new models is underway. The objective of this study was to characterize physiologic and transport functions of various sources of human renal proximal tubule epithelial cells (RPTECs).

View Article and Find Full Text PDF

Electrochemical Removal of Se(IV) from Wastewater Using RuO-Based Catalysts.

Nano Lett

January 2025

Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States.

The removal of selenite (SeO) from water is challenging due to the risk of secondary pollutants. To address this, we developed RuO-based nanocatalysts on the titanium plate (RuO/TP) for direct electrochemical reduction of Se(IV) to elemental selenium [Se(0)]. Optimizing Sn doping in RuO nanoparticles to induce charge redistribution enabled the RuSnO/TP catalyst to achieve ∼90% Se(IV) removal across concentrations of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!