Despite significant developments in mass spectrometry technology in recent years, no routine proteomics sequencing tool is currently available for peptide anions. The use of a molecular open-shell cation is presented here as a possible reaction partner to induce electron transfer dissociation with deprotonated peptide anions. In this negative electron transfer dissociation (NETD) scheme, an electron is abstracted from the peptide anion and transferred to the radical cation. This is demonstrated for the example of the fluoranthene cation, C(16)H(10)(+*), which is reacted with deprotonated phosphorylated peptides in a 3-D ion trap mass spectrometer. Selective backbone cleavage at the C(alpha)-C bond is observed to yield a and x fragments, similarly to electron detachment dissociation (EDD) of peptide anions. Crucially, the phosphorylation site is left intact in the dissociation process, allowing an identification and localization of the post-translational modification (PTM) site. In contrast, NETD using Xe(+*) as the reagent cation results in sequential neutral losses (CO(2) and H(3)PO(4)) from a/x fragments, which complicate the interpretation of the mass spectra. This difference in dissociation behavior can be understood in the framework of the reduced recombination energy of the electron transfer process for fluoranthene, which is estimated at 2.5-4.5 eV, compared to 6.7-8.7 eV for xenon. Similarly to ETD, proton transfer is found to compete with electron transfer processes in NETD. Isotope fitting of the charge-reduced species shows that in the case of fluoranthene-mediated NETD, proton transfer only accounts for <20%, whereas this process highly abundant for Xe(+*) (43 and 82%). Since proton abstraction from Xe(+*) is not possible, this suggests that Xe(+*) ionizes other transient species in the ion trap, which then engage in proton transfer reactions with the peptide anions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac9028592DOI Listing

Publication Analysis

Top Keywords

electron transfer
20
transfer dissociation
12
proton transfer
12
peptide anions
12
negative electron
8
transfer
8
dissociation deprotonated
8
radical cation
8
electron
7
dissociation
6

Similar Publications

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Differences in the efficiency and mechanisms of different iron-based materials driving synchronous nitrogen and phosphorus removal.

Environ Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China. Electronic address:

Iron-dependent denitrification has been substantially investigated worldwide due to the advantages of low cost, high efficiency, and synchronized phosphorous removal. However, differences in nitrogen metabolism processes with different iron-based materials as electron donors have not been systematically studied. This study investigated the efficacy of nitrogen and phosphate removal using various iron-based materials as electron donors.

View Article and Find Full Text PDF

Ferredoxin 1 and 2 (FDX1/2) constitute an evolutionarily conserved FDX family of iron-sulfur cluster (ISC) containing proteins. FDX1/2 are cognate substrates of ferredoxin reductase (FDXR) and serve as conduits for electron transfer from NADPH to a set of proteins involved in biogenesis of steroids, hemes, ISC and lipoylated proteins. Recently, we showed that Fdx1 is essential for embryonic development and lipid homeostasis.

View Article and Find Full Text PDF

A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!