AI Article Synopsis

  • Gold and carbon electrodes are commonly used in protein and DNA sensors, but liquid mercury electrodes were deemed ineffective due to their detection limitations.
  • The study introduces solid amalgam electrode (SAE) arrays as a viable substitute for liquid mercury, made through techniques like vacuum metal sputtering and photolithography.
  • The fabricated ultrathin amalgam microelectrodes were analyzed for their performance, leading to an optimized design for effective protein analysis using electrocatalytic techniques.

Article Abstract

Gold and carbon electrodes have been largely used as transducers in protein and DNA sensors and arrays. Liquid mercury electrodes, with potential windows allowing detection of DNA and protein reduction processes at highly negative potentials, were considered as useless in such arrays. Here, we show that solid amalgam electrode (SAE) arrays can be prepared as a substitution of liquid mercury in the analysis of the above biomacromolecules. Vacuum metal sputtering on a glass substrate, photolithography, and galvanic mercury amalgam formation were used for fabrication of an inexpensive disposable electrode array. The resulting ultrathin (less than 1 microm) amalgam microelectrodes were characterized with respect to influence of the electrode composition and size on the reproducibility and stability of electrochemical signals. Further characterization was performed using electron microscopy and the well-established ruthenium electrochemistry. Final, optimized, design was applied in protein analysis employing the recently described electrocatalytic chronopotentiometric peak H.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac902333sDOI Listing

Publication Analysis

Top Keywords

mercury amalgam
8
protein analysis
8
liquid mercury
8
fabrication characterization
4
characterization solid
4
mercury
4
solid mercury
4
amalgam
4
amalgam electrodes
4
protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!