Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hyperspectral remote sensing can improve the identification and classification of surface features through the spectrum comparing and matching to achieve classification and recognition. Because of the spatial resolution of the sensor as well as the difference in complexity and diversity on the ground, mixed pixels in the image are prevalent in remote sensing. The problem of subpixel unmixing is a prominent issue in the quantitative application of remote sensing. How to effectively interpret the mixed-pixel is one of the key issues in the application of remote sensing. In the present paper, the hyperspectral reflectance characteristics of the mixed-pixels formed with two kinds of materials whose area ratios have always been 1 : 1 were studied at different incident zenith angles and different topology location distribution, which provides a theoretical basis for the mixed pixel classification accuracy improvement.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!