The paper compares the levels of TIMP-1 and TIMP-2 in blood serum from patients with head and neck squamous cell carcinoma (HNSCC) to establish correlations with clinico-morphological parameters of the disease and prognosis. Our study involved 140 patients with HNSCC (T1-3N0-3M0) and 38 healthy donors. The level of serum TIMP-1 in patients was significantly higher (p < or = 0.02) while that of TIMP-2 was in inverse correlation with histological grade of tumor (p < or = 0.04) and age (p < or = 0.05). High level of TIMP-1 appeared an unfavorable prognosticator for 2-year relapse-free survival in HNSCC patients (p < or = 0.05). Those of both TIMP-1 and TIMP-2 identified in blood serum prior to therapy involved high risk of metastasis development (p < or = 0.05) and (p < or = 0.05), respectively.

Download full-text PDF

Source

Publication Analysis

Top Keywords

head neck
8
neck squamous
8
squamous cell
8
timp-1 timp-2
8
blood serum
8
[effect tissue
4
tissue inhibitors
4
inhibitors metalloproteinases
4
metalloproteinases timp
4
timp course
4

Similar Publications

Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating -amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with -amplified mCRC from the phase II TRIUMPH trial.

View Article and Find Full Text PDF

Polydopamine Nanohydrogel Decorated Adhesive and Responsive Hierarchical Microcarriers for Deafness Protection.

Adv Sci (Weinh)

January 2025

Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Jiangsu Provincial Key Medical Discipline, Nanjing University Medical School, Nanjing, 210008, China.

Cisplatin-induced ototoxicity is attributed to the aberrant accumulation of reactive oxygen species (ROS) within the inner ear. Antioxidants represented by α-lipoic acid (ALA) have been demonstrated to scavenge ROS in the cochlea, while effective delivery of these agents in vivo remains a major challenge. Here, a novel polydopamine (PDA) nanogel decorated adhesive and responsive hierarchical microcarriers for controllable is presented ALA delivery and deafness prevention.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Nanocapsuled Neutrophil Extracellular Trap Scavenger Combating Chronic Infectious Bone Destruction Diseases.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Chronic infectious bone destruction diseases, such as periodontitis, pose a significant global health challenge. Repairing the bone loss caused by these chronic infections remains challenging. In addition to pathogen removal, regulating host immunity is imperative.

View Article and Find Full Text PDF

Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!