The dynamics of the spin-orbit coupling in elegant and standard Hermite-Gaussian (HG), Laguerre-Gaussian (LG), and Bessel-Gaussian (BG) beams propagating through a uniaxial crystal are analyzed. We consider the structure of the electric fields of the paraxial beams and show that the extreme values of the spin and orbital angular momenta are inherent in the elegant HG and LG of high orders. The spin-orbit coupling in the BG beam of the lowest order can result in nearly 100% energy transport from a vortex-free beam to the vortex-bearing beam at a relatively small crystal length. The extreme spin-orbit coupling does not manifest itself in standard HG and LG beams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.27.000381 | DOI Listing |
NbO(OH) has emerged as a highly attractive photocatalyst based on its chemical stability, energetic band positions, and large active lattice sites. Compared to other various photocatalytic semiconductors, it can be synthesized easily. This study presents a systematic analysis of pristine and doped NbO(OH) based on recent developments in related research.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
In quantum information science and sensing, electron spins are often purified into a specific polarization through an optical-spin interface, a process known as optically detected magnetic resonance (ODMR). Diamond-NV centers and transition metals are both excellent platforms for these so-called color centers, while metal-free molecular analogues are also gaining popularity for their extended polarization lifetimes, milder environmental impacts, and reduced costs. In our earlier attempt at designing such organic high-spin π-diradicals, we proposed to spin-polarize by shelving triplet = ±1 populations as singlets.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.
The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G.
View Article and Find Full Text PDFCancer Lett
January 2025
School of Pharmacy, Shandong Second Medical University, Weifang 261053, China. Electronic address:
Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with adequate antigen presentation in deep-seated cancers remains challenging. Herein, to promote antigen presentation, an efficient dual-targeted photodynamic ICD inducer is developed. Due to the enhanced spin-orbit coupling and electron structure modulation, the Cy5-I-CF probe showcases exceptional reactive oxygen species (ROS) generation capacity within cancer cells.
View Article and Find Full Text PDFJ Med Chem
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!