In a subset of patients with the hereditary kidney-stone disease primary hyperoxaluria type 1 (PH1), the liver-specific enzyme alanine:glyoxylate aminotransferase (AGT) is mistargeted from peroxisomes to mitochondria. This is a consequence of the combined presence of the common P11L polymorphism and a disease-specific G170R mutation. In this paper, the crystal structure of mutant human AGT containing the G170R replacement determined at a resolution of 2.6 A is reported. The crystal structure of AGT consists of an intimate dimer in which an extended N-terminal segment of 21 amino acids from one subunit wraps as an elongated irregular coil around the outside of the crystallographic symmetry-related subunit. In addition to the N-terminal segment, the monomer structure contains a large domain of 261 amino acids and a small C-terminal domain of 110 amino acids. Comparison of the mutant AGT structure and that of wild-type normal AGT shows that the two structures are almost identical, with a backbone-atom r.m.s. deviation of 0.34 A. However, evidence of significant local structural changes in the vicinity of the G170R mutation might be linked to the apparent decrease in protein stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833026 | PMC |
http://dx.doi.org/10.1107/S1744309109054645 | DOI Listing |
FEBS Lett
February 2024
Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Spain.
Primary hyperoxaluria type I (PH1) is caused by deficient alanine:glyoxylate aminotransferase (AGT) activity. PH1-causing mutations in AGT lead to protein mistargeting and aggregation. Here, we use hydrogen-deuterium exchange (HDX) to characterize the wild-type (WT), the LM (a polymorphism frequent in PH1 patients) and the LM G170R (the most common mutation in PH1) variants of AGT.
View Article and Find Full Text PDFMolecules
December 2022
Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain.
The mutations G170R and I244T are the most common disease cause in primary hyperoxaluria type I (PH1). These mutations cause the misfolding of the AGT protein in the minor allele AGT-LM that contains the P11L polymorphism, which may affect the folding of the N-terminal segment (NTT-AGT). The NTT-AGT is phosphorylated at T9, although the role of this event in PH1 is unknown.
View Article and Find Full Text PDFPediatr Nephrol
March 2023
Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
Accurate diagnosis of primary hyperoxaluria (PH) has important therapeutic consequences. Since biochemical assessment can be unreliable, genetic testing is a crucial diagnostic tool for patients with PH to define the disease type. Patients with PH type 1 (PH1) have a worse prognosis than those with other PH types, despite the same extent of oxalate excretion.
View Article and Find Full Text PDFTransl Androl Urol
December 2020
Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Recently, the mainstream curative treatment for primary hyperoxaluria type 1 (PH1) is combined liver and kidney transplantation, and only kidney transplantation is considered ineffective for most PH1 patients. Furthermore, vitamin B6 (B6) is the only permitted drug available for treatment. However, except for specific mutations such as G170R and F152I in gene , data of B6 effect on other mutations are lacking.
View Article and Find Full Text PDFAm J Kidney Dis
May 2021
Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN.
Primary hyperoxaluria type 1 (PH1) is a genetic disorder characterized by overproduction of oxalate and eventual kidney failure. Kidney failure is usually irreversible in PH1. However, in patients with PH1 homozygous for the G170R mutation (in which the glycine at amino acid 170 is replaced by an arginine), pyridoxine is an enzyme cofactor and decreases urinary oxalate excretion by reducing hepatic oxalate production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!