Rationale And Objectives: To assess the performance of dual-energy computed tomography (DECT) equipped with the new tin filter technology to classify phantom renal lesions as cysts or enhancing masses.
Materials And Methods: Forty spherical lesion proxies ranging in diameter from 6 to 27 mm were filled with either distilled water (n = 10) representing cysts or titrated iodinated contrast solutions with a concentration of 0.45 (n = 10), 0.9 (n = 10), and 1.8 mg/mL (n = 10) representing enhancing masses. The lesion proxies were placed in a 12-cm diameter renal phantom containing minced beef and submerged in a 28-cm water bath. DECT was performed using the new dual-source CT system (Definition Flash, Siemens Healthcare, Forchheim, Germany) allowing for an improved energy separation by using a tin filter. DECT was performed at tube voltages of 140/80 kV without the tin filter (protocol A) and with tin filter (protocol B). The tube current time product was selected in each protocol to achieve a constant CTDI (computed tomography dose index) with both protocols of 19 mGy (full dose), 9.5 mGy (half dose), and 4.8 mGy (quarter dose). Two blinded readers classified each lesion as a cyst or enhancing mass by using iodine overlay (IO) images. One reader measured the CT numbers of each lesion at 120 kV, in the IO, linear blending (LB), and virtual noncontrast (VNC) images.
Results: The CT numbers of the lesions at 120 kV were 0.1 +/- 0.7 HU (0 mg iodine/mL), 9.1 +/- 0.7 HU (0.45 mg/mL), 18.1 +/- 1.4 HU (0.9 mg/mL), and 37.6 +/- 1.6 HU (1.8 mg/mL). Mean diameter of the lesion proxies filled with water or different iodine concentrations was similar (P = 0.38). Image noise was not significantly different in protocols A and B at the corresponding dose levels. At full dose, protocol A had a sensitivity of 93% and a specificity of 60% for discriminating renal lesions. Sensitivity and specificity declined to 84% and 38% at quarter dose. In protocol B, sensitivity was 100% and specificity was 90% at full dose and 93% and 70% at quarter dose. All misclassifications occurred in cyst or low iodine concentration (0.45 mg/mL) lesion proxies. The differences between CT numbers at 120 kV and in the IO, VNC, and AW (average weighted) images were significantly lower in protocol B compared to protocol A (each P < .05).
Conclusions: DECT using the tin filter results in an improved sensitivity and specificity for discriminating renal cysts from enhancing masses in a kidney phantom model and demonstrates higher dose efficiency as compared to former dual energy technology without tin filters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2009.11.007 | DOI Listing |
ACS Appl Energy Mater
December 2024
School of Chemistry, University of Bristol, Cantocks Close, BS8 1TS Bristol, U.K.
Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.
View Article and Find Full Text PDFJ Med Imaging Radiat Oncol
November 2024
Department of Radiology, Children's Hospital Westmead, Sydney, New South Wales, Australia.
Introduction: CT has replaced skull radiography as the gold standard for assessment of craniosynostosis in children. To minimise the risks of ionising radiation in this radiosensitive population, low-dose CT protocols are increasingly being adopted. This study evaluates the effectiveness of an ultra-low-dose CT protocol with a tin filter in reducing radiation exposure whilst maintaining diagnostic quality for craniosynostosis, and its utility in the evaluation of other findings not appreciable on skull radiography.
View Article and Find Full Text PDFEJNMMI Phys
November 2024
Department of Nuclear Medicine, Lillebaelt University Hospital, Beriderbakken 4, Vejle, 7100, Denmark.
Background: The tin filter has allowed radiation dose reduction in some standalone diagnostic computed tomography (CT) applications. Yet, 'low-dose' CT scans are commonly used in positron emission tomography (PET)-CT for lesion localisation/characterisation (L/C), with higher noise tolerated. Thus, dose reductions permissible with the tin filter at this image quality level may differ.
View Article and Find Full Text PDFSkeletal Radiol
November 2024
Department of Radiology, Balgrist University Hospital, Zurich, Switzerland.
Objective: To examine how different photon-counting detector (PCD) CT scanning and reconstruction methods affect the volume of metal artifacts and image quality for a hip prosthesis phantom.
Methods: A titanium and cobalt-chromium-molybdenum-alloy total hip prosthesis phantom was scanned using a clinical PCD-CT with a constant tube potential (140 kV) and Computed-Tomography-Dose- Index (7 mGy). Different scan settings were used: with/without tin-filter (Sn), with/without ultra-high resolution (UHR), both individually and combined, resulting in four modes: Quantumplus (Standard), UHR Quantumplus (HighRes), QuantumSn (Standard-Tin) and UHR QuantumSn (HighRes-Tin).
Invest Radiol
October 2024
From the Department of Orthodontics and Orofacial Orthopedics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (I.W., S.E., L.G.); Imaging Science Institute, University Hospital Erlangen, Erlangen, Germany (H.-P.F., P.A.); Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (M.S.M., M.Z., M.U., M.K.); and Center for Clinical Studies, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany (A.S.).
Objectives: This study sought to elucidate the diagnostic performance of 0.55 T magnetic resonance imaging (MRI) for pediatric dental imaging, specifically in terms of the image quality (IQ) for detecting ectopic and/or supernumerary teeth, compared with routine ultra-low-dose computed tomography (ULD-CT) of the jaw.
Materials And Methods: A total of 16 pediatric patients (mean age: 12.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!