A novel methodology is introduced for rapid serological diagnosis. This methodology combines the antibody bridging assay principle with the measurement of antibody avidity. The combination allows the determination of the infection phase with a single dilution of a single sample of serum. This is a significant improvement on current serological techniques which often require either paired-sample testing (IgG/IgM serology) or testing of the sample in several dilutions (IgG avidity testing). Assay methods were developed on two immunoassay platforms; the heterogeneous time-resolved fluoroimmunoassay and the separation-free two-photon excitation fluorometry. The new methods were compared to conventional class-specific IgG/IgM and IgG avidity techniques. The major findings were that the avidity results of the new methodology were independent of the sample dilution (specific antibody concentration in serum) and consistent between immunoassay platforms. This new methodology is simple, rapid, and quick to perform. It provides the possibility of running serodiagnostic tests at point-of-care with bench-top random-access analyzers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2010.02.028DOI Listing

Publication Analysis

Top Keywords

antibody avidity
8
avidity methodology
8
serological diagnosis
8
igg avidity
8
immunoassay platforms
8
avidity
5
methodology
5
novel antibody
4
methodology rapid
4
rapid point-of-care
4

Similar Publications

Chemically Induced Dimerization via Nanobody Binding Facilitates in Situ Ligand Assembly and On-Demand GPCR Activation.

JACS Au

December 2024

Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.

Methods that enable the on-demand synthesis of biologically active molecules offer the potential for a high degree of control over the timing and context of target activation; however, such approaches often require extensive engineering to implement. Tools to restrict the localization of assembly also remain limited. Here we present a new approach for stimulus-induced ligand assembly that helps to address these challenges.

View Article and Find Full Text PDF

Single chain fragment variable, a new theranostic approach for cardiovascular diseases.

Front Immunol

December 2024

Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China.

Cardiovascular diseases (CVDs) remain a significant global health challenge, leading to substantial morbidity and mortality. Despite recent advancements in CVD management, pharmaceutical treatments often suffer from poor pharmacokinetics and high toxicity. With the rapid progress of modern molecular biology and immunology, however, single-chain fragment variable (scFv) molecule engineering has emerged as a promising theranostic tool to offer specificity and versatility in targeting CVD-related antigens.

View Article and Find Full Text PDF

An antibody-free bio-layer interferometry biosensor for immunoglobulin G1 detection in human serum by using molecularly imprinted polynorepinephrine.

Biosens Bioelectron

December 2024

Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy. Electronic address:

Bio-Layer Interferometry (BLI) has emerged as a versatile technique in affinity-based biosensing, analogous to Surface Plasmon Resonance. BLI enables real-time, label-free detection, and quantification of biomolecular interactions between an immobilized receptor and an analyte in solution. The BLI sensor comprises an optical fiber with an internal reference layer at the end and an external biocompatible layer where biological receptors are immobilized and exposed to the solution.

View Article and Find Full Text PDF

Structural Immunology of SARS-CoV-2.

Immunol Rev

December 2024

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.

The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants.

View Article and Find Full Text PDF

The folate receptor (FR) is a well-known biomarker that is overexpressed in many cancer cells, making it a valuable target for cancer diagnostics and therapeutic strategies. However, identifying cancer biomarkers remains a challenge due to factors such as lengthy procedures, high costs, and low sensitivity. This study presents the development of a novel, cost-effective biosensor designed for the detection of FR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!