Butterfly wing color patterns can be modified by the application of temperature shock to pupae immediately after pupation, which has been attributed to a cold-shock-induced humoral factor called cold-shock hormone (CSH). Here, we physiologically characterized CSH and pharmacological action of tungstate, using a nymphalid butterfly Junonia orithya. We first showed that the precise patterns of modification were dependent on the time-point of the cold-shock treatment after pupation, and confirmed that the modification properties induced in a cold-shocked pupa were able to be transferred to another pupa in a parabiosis experiment. Cold-shock application after removal of the head and prothorax together still produced modified wings, excluding major involvement of the brain-retrocerebral neuroendocrine complex. Furthermore, tungstate injection induced modifications even in individuals whose head and prothorax were removed. Importantly, transplantation of tracheae isolated from cold-shocked pupae induced modifications in the recipient wings. We identified a chemical peak in hemolymph of the cold-shocked individuals using HPLC, which corresponded to dopamine, and demonstrated that dopamine and its related biogenic amines have ability to induce small color-pattern changes. Taken together, the present study suggests that CSH is likely to be secreted from trachea-associated endocrine cells upon cold-shock treatment and that tungstate may change color patterns via its direct action on wings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinsphys.2010.02.013 | DOI Listing |
J Insect Physiol
September 2010
The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan.
Butterfly wing color patterns can be modified by the application of temperature shock to pupae immediately after pupation, which has been attributed to a cold-shock-induced humoral factor called cold-shock hormone (CSH). Here, we physiologically characterized CSH and pharmacological action of tungstate, using a nymphalid butterfly Junonia orithya. We first showed that the precise patterns of modification were dependent on the time-point of the cold-shock treatment after pupation, and confirmed that the modification properties induced in a cold-shocked pupa were able to be transferred to another pupa in a parabiosis experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!