Compensation of large motion sensor displacements during long recordings of limb movements.

J Biomech

Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.

Published: June 2010

In motion capture applications using electromagnetic tracking systems the process of anatomical calibration associates the technical frames of sensors attached to the skin with the human anatomy. Joint centers and axes are determined relative to these frames. A change of orientation of the sensor relative to the skin renders this calibration faulty. This sensitivity regarding sensor displacement can turn out to be a serious problem with movement recordings of several minutes duration. We propose the "dislocation distance" as a novel method to quantify sensor displacement and to detect gradual and sudden changes of sensor orientation. Furthermore a method to define a so called fixed technical frame is proposed as a robust reference frame which can adapt to a new sensor orientation on the skin. The proposed methods are applied to quantify the effects of sensor displacement of 120 upper and lower limb movement recordings of newborns revealing the need for a method to compensate for sensor displacement. The reliability of the fixed technical frame is quantified and it is shown that trend and dispersion of the dislocation distance can be significantly reduced. A working example illustrates the consequences of sensor displacement on derived angle time series and how they are avoided using the fixed technical frame.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2010.02.018DOI Listing

Publication Analysis

Top Keywords

sensor displacement
20
fixed technical
12
technical frame
12
sensor
9
movement recordings
8
sensor orientation
8
displacement
5
compensation large
4
large motion
4
motion sensor
4

Similar Publications

In recent years, civil engineering has increasingly embraced communication tools for automation, with sensors playing a pivotal role, especially in structural health monitoring (SHM). These sensors enable precise data acquisition, measuring parameters like force, displacement, and temperature and transmit data for timely interventions to prevent failures. This approach reduces reliance on manual inspections, offering more accurate outcomes.

View Article and Find Full Text PDF

Conventional floating bridge systems used during emergency repairs, such as during wartime or after natural disasters, typically rely on passive rubber bearings or semi-active control systems. These methods often limit traffic speed, stability, and safety under dynamic conditions, including varying vehicle loads and fluctuating water levels. To address these challenges, this study proposes a novel Hydraulic Self-Adaptive Bearing System (HABS).

View Article and Find Full Text PDF

Structural design usually adopts uniform temperature action. However, during the actual construction of the structure, the temperature field acting on the structure is inhomogeneous. Therefore, the simulation of the construction of statically indeterminate steel structures considering only the uniform temperature field cannot truly reflect the temperature action after structural molding and the evolution of the stress performance of the temporary stress system of structural construction.

View Article and Find Full Text PDF

This paper is devoted to the development of a window-type inductive current transformer (iCT) with a rated primary current equal to 400 A and two secondary windings with rated currents of 5 A and 1 A. Its novelty concerns the presentation of this process in the case of an iCT with a 0.2S accuracy class ensured not only for a sinusoidal current of a frequency of 50 Hz but also for the transformation of distorted current in the harmonic frequency range from 50 Hz to 5 kHz.

View Article and Find Full Text PDF

Localization accuracy in non-line-of-sight (NLOS) scenarios is often hindered by the complex nature of multipath propagation. Traditional approaches typically focus on NLOS node identification and error mitigation techniques. However, the intricacies of NLOS localization are intrinsically tied to propagation challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!