NOL7 is a candidate tumor suppressor gene that localizes to 6p23, a chromosomal region frequently associated with loss of heterozygosity in a number of malignancies including cervical cancer (CC). Re-expression of NOL7 in CC cells suppresses in vivo tumor growth by 95% and alters the angiogenic phenotype by modulating the expression of VEGF and TSP1. Here, we describe the determination of two NOL7 transcriptional start sites (TSS), the cloning of its regulatory promoter region, and the identification of transcription factors that regulate its expression. Using 5' Rapid amplification of complementary DNA ends (RACE), two transcriptional start sites were identified. Deletion analysis determined that the essential elements required for the optimal promoter activity of NOL7 were 560 bp upstream of its translation start site. In silico analysis suggested that the promoter region contained potential binding sites for the SP1, c-Myc and RXRalpha transcription factors as well as an overall GC content of greater than 60%. Chromatin immunoprecipitation (ChIP) confirmed that SP1, c-Myc and RXRalpha bound to the NOL7 promoter region. Finally, we demonstrate that NOL7 expression was positively regulated by c-Myc and RXRalpha. These results demonstrate that the NOL7 promoter region possesses each of the key elements of a TATA-less promoter. In addition, the positive regulation of NOL7 by c-Myc and RXRalpha provides additional mechanistic insights into the potential role of NOL7 in CC and other malignancies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408873PMC
http://dx.doi.org/10.1016/j.gene.2010.02.008DOI Listing

Publication Analysis

Top Keywords

promoter region
16
c-myc rxralpha
16
nol7
10
transcriptional start
8
start sites
8
transcription factors
8
sp1 c-myc
8
nol7 promoter
8
demonstrate nol7
8
promoter
7

Similar Publications

A NAC transcription factor and a MADS-box protein antagonistically regulate sucrose accumulation in strawberry receptacles.

Plant Physiol

March 2025

Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.

Sugar accumulation during fruit ripening is an essential physiological change that influences fruit quality. While NAC transcription factors are recognized for their role in modulating strawberry (Fragaria × ananassa) fruit ripening, their specific contributions to sugar accumulation have remained largely unexplored. This study identified FvNAC073, a NAC transcription factor, as a key regulator that not only exhibits a gradual increase in gene expression during fruit ripening but also enhances the accumulation of sucrose.

View Article and Find Full Text PDF

Genome-wide identification and expression analysis of s under various stress treatment in .

Physiol Mol Biol Plants

February 2025

Traditional Chinese Medicine Institute of Anhui Dabie Mountain, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012 China.

Unlabelled: The cytochrome P450 monooxygenases (CYP450) are the largest enzyme family in plant metabolism, playing a key role in the biosynthesis of both primary and secondary metabolites. However, the CYP450 has not yet been systematically characterized in Dendrobium species. In this study, 193 genes were identified in the genome of through bioinformatics, and divided into 2 groups and 10 clans.

View Article and Find Full Text PDF

Precise engineering of gene expression by editing plasticity.

Genome Biol

March 2025

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.

Background: Identifying transcriptional cis-regulatory elements (CREs) and understanding their role in gene expression are essential for the precise manipulation of gene expression and associated phenotypes. This knowledge is fundamental for advancing genetic engineering and improving crop traits.

Results: We here demonstrate that CREs can be accurately predicted and utilized to precisely regulate gene expression beyond the range of natural variation.

View Article and Find Full Text PDF

Accurate procentriole formation is critical for centriole duplication. However, the holistic transcriptional regulatory mechanisms underlying this process remain elusive. Here, we show that KAT7 crotonylation, facilitated by the crotonyltransferase hMOF, competes against its acetylation regulated by the deacetylase HDAC2 at the K432 residue upon DNA damage stimulation.

View Article and Find Full Text PDF

The homotetrameric form of p53 is critical for performing essential functions like maintaining genomic stability and preventing uncontrolled cell proliferation. In part, these crucial functions are mediated by the p53 C-terminal region (CTR) containing the tetramerization/oligomerization domain (TD/OD) and regulatory domain (RD) responsible for the protein's oligomeric state and regulating the p53 function. Mutations in the tetramerization domain decrease the transactivation potential and alter the transactivation specificity of p53.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!