Hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from young rat hippocampus, has been known to promote the differentiation of septo-hippocampal cholinergic neurons. Recently, the precursor protein of HCNP (HCNP-pp) has also received attention as a multifunctional protein with roles, in addition to serving as the HCNP precursor, such as acting as an ATP-binding protein, a Raf kinase inhibitor protein (RKIP), and phosphatidylethanolamine-binding protein (PEBP). In particular, the function of RKIP has attracted attention over several years for its role in controlling cellular proliferation and metastasis in cancer cells. HCNP-pp is also thought to be important in regulating the proliferation and differentiation of neuronal cells in vitro and in vivo by modification of the MAPK cascade. In the present study, we used cultured adult rat hippocampal progenitor cells (AHPs), which are thought to be important for memory formation, and focused on the role of HCNP-pp in adult neurogenesis, namely, the production of new neurons from neural stem/progenitor cells. We found that HCNP-pp expression in AHPs was closely associated with differentiation into MAP2ab-positive neurons and RIP-positive oligodendrocytes, but not into GFAP-positive astrocytes. By contrast, a down-regulated HCNP-pp expression in AHPs accompanied differentiation into GFAP-positive astrocytes. Direct manipulations of HCNP-pp via viral over-expression or siRNA downregulation further confirmed the HCNP-pp contribution to specific neural lineage commitment of AHPs. Our results show that the expression level of HCNP-pp acts as a key regulator for differentiation of cultured AHPs into specific neural lineages, indicating that the control of neural stem cell fate can be achieved via the HCNP-pp pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2010.02.071 | DOI Listing |
Int J Mol Sci
May 2023
Department of Neurology, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
The cholinergic efferent network from the medial septal nucleus to the hippocampus is crucial for learning and memory. This study aimed to clarify whether hippocampal cholinergic neurostimulating peptide (HCNP) has a rescue function in the cholinergic dysfunction of HCNP precursor protein (HCNP-pp) conditional knockout (cKO). Chemically synthesized HCNP or a vehicle were continuously administered into the cerebral ventricle of HCNP-pp cKO mice and littermate floxed (control) mice for two weeks via osmotic pumps.
View Article and Find Full Text PDFSci Rep
November 2022
Department of Neurology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-Ku, Nagoya, 467-8602, Japan.
Cholinergic activation can enhance glutamatergic activity in the hippocampus under pathologic conditions, such as Alzheimer's disease. The aim of the present study was to elucidate the relationship between glutamatergic neural functional decline and cholinergic neural dysfunction in the hippocampus. We report the importance of hippocampal cholinergic neurostimulating peptide (HCNP) in inducing acetylcholine synthesis in the medial septal nucleus.
View Article and Find Full Text PDFSci Rep
November 2021
Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan.
The cholinergic efferent network from the medial septal nucleus to the hippocampus plays an important role in learning and memory processes. This cholinergic projection can generate theta oscillations in the hippocampus to encode novel information. Hippocampal cholinergic neurostimulating peptide (HCNP), which induces acetylcholine (Ach) synthesis in the medial septal nuclei of an explant culture system, was purified from the soluble fraction of postnatal rat hippocampus.
View Article and Find Full Text PDFBrain Circ
March 2021
Department of Neurology, Nagoya City University, Nagoya, Japan.
Cholinergic efferent networks located from the medial septal nucleus to the hippocampus play a pivotal role in learning and memory outcomes by generating regular theta rhythms that enhance information retention. Hippocampal cholinergic neurostimulating peptide (HCNP), derived from the N-terminus of HCNP precursor protein (HCNP-pp), promotes the synthesis of acetylcholine in the medial septal nuclei. HCNP-pp deletion significantly reduced theta power in CA1 possibly due to lower levels of choline acetyltransferase-positive axons in CA1 stratum oriens, suggesting cholinergic disruptions in the septo-hippocampal system.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2021
Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan. Electronic address:
Cholinergic neural activation from the medial septal nucleus to hippocampus plays a crucial role in episodic memory as a regulating system for glutamatergic neural activation in the hippocampus. As a candidate regulating factor for acetylcholine synthesis in the medial septal nucleus, hippocampal cholinergic neurostimulating peptide (HCNP) was purified from the soluble fraction of young adult rat hippocampus. HCNP is released from its precursor protein (HCNP-pp), also referred to as phosphatidylethanolamine-binding protein 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!