A lattice Monte Carlo (MC) model was proposed with the aim of understanding the factors affecting the chiral self-assembly of tripod-shaped molecules in two dimensions. To that end a system of flat symmetric molecules adsorbed on a triangular lattice was simulated by using the canonical ensemble method. Special attention was paid to the influence of size and composition of the building block on the morphology of the adsorbed overlayer. The obtained results demonstrated a spontaneous self-assembly into extended chiral networks with hexagonal cavities, highlighting the ability of the model to reproduce basic structural features of the corresponding experimental systems. The simulated assemblies were analyzed with respect to their structural and energetic properties resulting in quantitative estimates of the unit cell parameters and mean potential energy of the adsorbed layer. The predictive potential of the model was additionally illustrated by comparison of the obtained superstructures with the recent STM images that have been recorded for different organic tripod-shaped molecules adsorbed at the liquid/pyrolytic graphite interface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la100043wDOI Listing

Publication Analysis

Top Keywords

tripod-shaped molecules
8
molecules adsorbed
8
computer simulation
4
simulation chiral
4
chiral nanoporous
4
nanoporous networks
4
networks solid
4
solid surfaces
4
surfaces lattice
4
lattice monte
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!