TRPM2 channel regulates endothelial barrier function.

Adv Exp Med Biol

Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, 60612, USA

Published: April 2010

Oxidative [Au1]stress, through the production of oxygen metabolites such as hydrogen peroxide[Au2] (H(2)O(2)), increases vascular endothelial permeability and plays a crucial role in several lung diseases. The transient receptor potential (melastatin) 2 (TRPM2) is an oxidant-sensitive, nonselective cation channel that is widely expressed in mammalian tissues, including the vascular endothelium. We have demonstrated the involvement of TRPM2 in mediating oxidant-induced calcium entry and endothelial hyperpermeability in cultured pulmonary artery endothelial cells. Here, we provide evidence that neutrophil activation-dependent increase in endothelial permeability and neutrophil extravasation requires TRPM2 in cultured endothelial cells. In addition, protein kinase Calpha (PKCalpha) that rapidly colocalizes with the short (nonconducting) TRPM2 isoform after exposure to hydrogen peroxide positively regulates calcium entry through the functional TRPM2 channel. Thus, increase in lung microvessel permeability and neutrophil sequestration depends on the activation of endothelial TRPM2 by neutrophilic oxidants and on PKCalpha regulation of TRPM2 channel activity. Manipulating TRPM2 function in the endothelium may represent a novel strategy aimed to prevent oxidative stress-related vascular dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-60761-500-2_10DOI Listing

Publication Analysis

Top Keywords

trpm2 channel
12
trpm2
9
endothelial permeability
8
calcium entry
8
endothelial cells
8
permeability neutrophil
8
endothelial
7
channel regulates
4
regulates endothelial
4
endothelial barrier
4

Similar Publications

Background: Atopic dermatitis (AD) is a chronic, pruritic, and inflammatory dermatosis seen in individuals with an atopic predisposition. This study aimed to examine the immunoreactivity of spexin and TRPM2 in skin samples from patients with AD and MF lesions using immunohistochemical methods.

Materials And Methods: The study utilized a total of 60 skin samples, comprising 20 from AD patients, 20 from MF patients, and 20 from control subjects.

View Article and Find Full Text PDF

Downregulation and inhibition of TRPM2 calcium channel prevent oxidative stress-induced endothelial dysfunction in the EA.hy926 endothelial cells model - preliminary studies.

Adv Med Sci

January 2025

Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland; Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, Płock, Poland.

Purpose: Proper functioning of the endothelial barrier is crucial for cardiovascular system homeostasis. Oxidative stress can lead to endothelial dysfunction (ED), damaging lipids, proteins, and DNA. Reactive oxygen species also increase cytoplasmic Ca levels, activating transient receptor potential melastatin 2 (TRPM2), a membrane non-selective calcium channel.

View Article and Find Full Text PDF
Article Synopsis
  • Specialized heat-sensitive neurons in the skin relay heat sensations, with the sodium-activated potassium channel Slick playing a significant role in controlling noxious heat responses.
  • Researchers created mice lacking Slick in specific sensory neurons (SNS-Slick mice) and found these mice had quicker responses to painful heat tests compared to normal mice.
  • Further experiments revealed that Slick works alongside the heat sensor TRPM3, suggesting that Slick helps to inhibit pain responses by modulating TRPM3 activity in sensory neurons.
View Article and Find Full Text PDF

Objects: This study intends to explore the possible mechanisms of curcumin's action after knee osteoarthritis.

Methods: Chondrocytes alone were used to mimic the cellular inflammatory response with interleukin IL-1β. Overexpressing TRPM2 chondrocytes were constructed using cell transfection technique for mechanism verification.

View Article and Find Full Text PDF

TRPM2 deficiency ameliorated H9N2 influenza virus-induced acute lung injury in mice.

Microb Pathog

November 2024

Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075000, Hebei, PR China. Electronic address:

Oxidative stress is involved in lung damage induced by the influenza virus. The transient receptor potential melastatin-2 (TRPM2) cation channel, a Ca permeable non-selective cation channel, is implicated in the mediation of multiple tissue injuries induced by oxidative stress. The role of TRPM2 in several diseases has been widely studied, but there have been few studies on the involvement of TRPM2 in lung injury induced by the H9N2 influenza virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!