We revisit the method of conformal mapping and apply it to the setting found in mechanosensory detection systems such as the lateral-line system of fish. We derive easy-to-use equations capable of describing analytically the influence of the stimulus shape on the flow field and thus on the input to the lateral line. The present approach shows that the shape of a submerged moving object affects its perception if its distance to a detecting animal does not exceed the object's body length.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00422-010-0369-7DOI Listing

Publication Analysis

Top Keywords

stimulus shape
8
shape lateral-line
4
lateral-line perception
4
perception analytical
4
analytical approach
4
approach analyze
4
analyze natural
4
natural stimuli
4
stimuli characteristics
4
characteristics revisit
4

Similar Publications

The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study we examined whether the strength of low-frequency EEG phase entrainment to rhythmic stimulus sequences varied with pupil size and posterior alpha-band power, thought to reflect arousal level and excitability of posterior cortical brain areas, respectively.

View Article and Find Full Text PDF

Soft actuators for intelligent robots require further elaboration to improve their biomedical applicability, which has led to the development of a series of flexible stimulus-responsive materials. However, fabricating degradable soft actuators that exhibit synergistic color and shape changes in response to environmental stimuli remains challenging. Here, we developed a soft actuating gel based on carbon dots (CDs) that are chemically cross-linked with sodium alginate.

View Article and Find Full Text PDF

Neural correlates of perceptual plasticity in the auditory midbrain and thalamus.

J Neurosci

January 2025

Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742.

Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the sensitivity of auditory cortical (ACX) neurons support many aspects of perceptual plasticity, the contribution of subcortical auditory regions to this process is less understood.

View Article and Find Full Text PDF

Audio-visual concert performances synchronize audience's heart rates.

Ann N Y Acad Sci

January 2025

Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.

People enjoy engaging with music. Live music concerts provide an excellent option to investigate real-world music experiences, and at the same time, use neurophysiological synchrony to assess dynamic engagement. In the current study, we assessed engagement in a live concert setting using synchrony of cardiorespiratory measures, comparing inter-subject, stimulus-response, correlation, and phase coherence.

View Article and Find Full Text PDF
Article Synopsis
  • Neurons communicate information through variable action potentials that can differ significantly with each stimulus repetition.
  • The study investigates the reliability of cortical neurons when stimulated with simulated synaptic inputs and finds that parvalbumin+ (PV) interneurons exhibit high spiking reliability compared to excitatory neurons.
  • This high reliability in PV interneurons enables precise inhibition of other neurons, while the variability in excitatory neurons allows for better integration of synaptic inputs, ultimately influencing how information is processed in the brain.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!