RNA-Seq analysis to capture the transcriptome landscape of a single cell.

Nat Protoc

Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.

Published: March 2010

We describe here a protocol for digital transcriptome analysis in a single mouse oocyte and blastomere using a deep-sequencing approach. In this method, individual cells are isolated and transferred into lysate buffer by mouth pipette, followed by reverse transcription carried out directly on the whole cell lysate. Free primers are removed by exonuclease I and a poly(A) tail is added to the 3' end of the first-strand cDNAs by terminal deoxynucleotidyl transferase. Single-cell cDNAs are then amplified by 20 + 9 cycles of PCR. The resulting 100-200 ng of amplified cDNAs are used to construct a sequencing library, which can be used for deep sequencing using the SOLiD system. Compared with cDNA microarray techniques, our assay can capture up to 75% more genes expressed in early embryos. This protocol can generate deep-sequencing libraries for 16 single-cell samples within 6 d.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847604PMC
http://dx.doi.org/10.1038/nprot.2009.236DOI Listing

Publication Analysis

Top Keywords

rna-seq analysis
4
analysis capture
4
capture transcriptome
4
transcriptome landscape
4
landscape single
4
single cell
4
cell describe
4
describe protocol
4
protocol digital
4
digital transcriptome
4

Similar Publications

We aimed to assess the impact of splicing variants reported in our laboratory to gain insight into their clinical relevance. A total of 108 consecutive individuals, for whom 113 splicing variants had been reported, were selected for RNA-sequencing (RNA-seq), considering the gene expression in blood. A protocol was developed to perform RNA extraction and sequencing using the same sample (dried blood spots, DBS) provided for the DNA analysis, including library preparation and bioinformatic pipeline analysis.

View Article and Find Full Text PDF

Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy.

Cell Death Dis

January 2025

Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.

View Article and Find Full Text PDF

Recent barcoding technologies allow reconstructing lineage trees while capturing paired single-cell RNA-sequencing (scRNA-seq) data. Such datasets provide opportunities to compare gene expression memory maintenance through lineage branching and pinpoint critical genes in these processes. Here we develop Permutation, Optimization, and Representation learning based single Cell gene Expression and Lineage ANalysis (PORCELAN) to identify lineage-informative genes or subtrees where lineage and expression are tightly coupled.

View Article and Find Full Text PDF

The characteristics of aminotransferases gene family in Ruditapes philippinarum and its response to salinity stresses.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.

Aminotransferase is involved in the regulation of amino acid metabolism, which can affect the balance and distribution of amino acids in the organism, help maintain the homeostasis of amino acids in the organism, and play an important role in the environmental adaptation of aquatic animals. In this study, a total of 28 aminotransferase genes were identified in the genome of R. philippinarum.

View Article and Find Full Text PDF

Maize transcription factor ZmEREB167 negatively regulates starch accumulation and kernel size.

J Genet Genomics

January 2025

State Key Laboratory of Maize Bio-breeding, Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Department of Plant Genetics and Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Beijing 100193, China. Electronic address:

Transcription factors play critical roles in the regulation of gene expression during maize kernel development. The maize endosperm is a large storage organ, accounting for nearly 90% of the dry weight of mature kernel, and is also the main place for starch storage. In this study, we identify an endosperm-specific EREB gene, ZmEREB167, which encodes a nucleus-localized EREB protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!