Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/464032a | DOI Listing |
Anal Methods
January 2025
National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, Beijing, 100029, China.
With the increasing demand for energy, nuclear energy has been developing rapidly. The quantitative detection and qualitative identification of uranium (U) are of great significance for the comprehensive and efficient use of U resources and the control of nuclear and radioactive substances. In this study, the detection of U is divided into liquid sample detection, solid sample detection, gas sample detection, and industrial detection from the perspectives of the sample state and detection environment.
View Article and Find Full Text PDFSci Rep
January 2025
Los Alamos National Laboratory, Los Alamos, NM, 87544, USA.
Detecting shielded special nuclear material, such as nuclear explosives, is a difficult challenge pursued by non-proliferation, anti-terrorism, and nuclear security programs worldwide. Interrogation with intense fast-neutron pulses is a promising method to characterize concealed nuclear material rapidly but is limited by suitable source availability and proven instrumentation. In this study we have pioneered a demonstration of such an interrogation method using a high-intensity, short-pulse, laser-driven neutron source that offers potential benefits compared to conventional neutron sources.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
State Key Lab of Power Systems, International Joint Laboratory on Low Carbon Clean Energy Innovation, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China; Shanxi Research Institute for Clean Energy, Tsinghua University, Shanxi, 030032, China; College of Energy and Electrical Engineering, Qinghai University, Xining, Qinghai, 810016, China. Electronic address:
Background: Laser-induced breakdown spectroscopy (LIBS) has long been regarded as the future superstar for chemical analysis. However, hindered by the fact that the signal source of LIBS is a spatially and temporally unstable plasma that interacts dramatically with ambient gases, LIBS has always suffered from poor signal quality, especially low signal repeatability. Although ambient gases act as one of the most direct and critical factors affecting LIBS signals, a clear understanding on how ambient gas properties impact LIBS signals is still lacking to act as guideline for the signal quality improvement.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Hazardous Air Pollutants Laboratory, Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan.
Environmentally hazardous radioactive isotopes of iodine may be released from a nuclear power plant as a by-product of uranium fission. The efficient and safe capture of volatile radioiodine is of great significance in the history of nuclear power plants. Due to its high volatility and carcinogenic characteristics, elimination of iodine gas (I) from air is the need of the hour from an environmental and health point of view.
View Article and Find Full Text PDFSci Total Environ
December 2024
Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden, Germany. Electronic address:
Microbial U(VI) reduction plays a major role in new bioremediation strategies for radionuclide-contaminated environments and can potentially affect the safe disposal of high-level radioactive waste in a deep geological repository. Desulfitobacterium sp. G1-2, isolated from a bentonite sample, was used to investigate its potential to reduce U(VI) in different background electrolytes: bicarbonate buffer, where a uranyl(VI)‑carbonate complex predominates, and synthetic Opalinus Clay pore water, where a uranyl(VI)-lactate complex occurs, as confirmed by time-resolved laser-induced fluorescence spectroscopic measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!