Association between winter anthocyanin production and drought stress in angiosperm evergreen species.

J Exp Bot

Wake Forest University, Department of Biology, PO Box 7325 Reynolda Station, Winston-Salem, North Carolina 27106-7325, USA.

Published: June 2010

Leaves of many evergreen angiosperm species turn red under high light during winter due to the production of anthocyanin pigments, while leaves of other species remain green. There is currently no explanation for why some evergreen species exhibit winter reddening while others do not. Conditions associated with low leaf water potentials (Psi) have been shown to induce reddening in many plant species. Because evergreen species differ in susceptibility to water stress during winter, it is hypothesized that species which undergo winter colour change correspond with those that experience/tolerate the most severe daily declines in leaf Psi during winter. Six angiosperm evergreen species which synthesize anthocyanin in leaves under high light during winter and five species which do not were studied. Field Psi, pressure/volume curves, and gas exchange measurements were derived in summer (before leaf colour change had occurred) and winter. Consistent with the hypothesis, red-leafed species as a group had significantly lower midday Psi in winter than green-leafed species, but not during the summer when all the leaves were green. However, some red-leafed species showed midday declines similar to those of green-leafed species, suggesting that low Psi alone may not induce reddening. Pressure-volume curves also provided some evidence of acclimation to more negative water potentials by red-leafed species during winter (e.g. greater osmotic adjustment and cell wall hardening on average). However, much overlap in these physiological parameters was observed as well between red and green-leafed species, and some of the least drought-acclimated species were red-leafed. No difference was observed in transpiration (E) during winter between red and green-leaved species. When data were combined, only three of the six red-leafed species examined appeared physiologically acclimated to prolonged drought stress, compared to one of the five green-leafed species. This suggests that drought stress alone is not sufficient to explain winter reddening in evergreen angiosperms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852665PMC
http://dx.doi.org/10.1093/jxb/erq042DOI Listing

Publication Analysis

Top Keywords

species
19
evergreen species
16
red-leafed species
16
green-leafed species
16
drought stress
12
winter
11
angiosperm evergreen
8
high light
8
light winter
8
winter reddening
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!