*The delay in autumnal senescence that has occurred in recent decades has been linked to rising temperatures. Here, we suggest that increasing atmospheric CO2 may partly account for delayed autumnal senescence and for the first time, through transcriptome analysis, identify gene expression changes associated with this delay. *Using a plantation of Populus x euramericana grown in elevated [CO2] (e[CO2]) with free-air CO2 enrichment (FACE) technology, we investigated the molecular and biochemical basis of this response. A Populus cDNA microarray was used to identify genes representing multiple biochemical pathways influenced by e[CO2] during senescence. Gene expression changes were confirmed through real-time quantitative PCR, and leaf biochemical assays. *Pathways for secondary metabolism and glycolysis were significantly up-regulated by e[CO2] during senescence, in particular, those related to anthocyanin biosynthesis. Expressed sequence tags (ESTs) representing the two most significantly up-regulated transcripts in e[CO2], LDOX (leucoanthocyanidin dioxgenase) and DFR (dihydroflavonol reductase), gave (e[CO2]/ambient CO(2) (a[CO2])) expression ratios of 39.6 and 19.3, respectively. *We showed that in e[CO2] there was increased autumnal leaf sugar accumulation and up-regulation of genes determining anthocyanin biosynthesis which, we propose, prolongs leaf longevity during natural autumnal senescence.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8137.2010.03184.xDOI Listing

Publication Analysis

Top Keywords

autumnal senescence
16
anthocyanin biosynthesis
12
delayed autumnal
8
gene expression
8
expression changes
8
e[co2] senescence
8
senescence
6
autumnal
5
e[co2]
5
transcriptome populus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!