Inhibition of histone deacetylase (HDAC) is a promising mechanism for novel, anti-myeloma agents. We investigated the effects of the novel HDAC inhibitor resminostat on multiple myeloma (MM) cells in vitro. Resminostat is a potent inhibitor of HDACs 1, 3 and 6 [50% inhibitory concentration (IC50)=43-72 nmol/l] representing HDAC classes I and II and induces hyperacetylation of histone H4 in MM cells. Low micromolar concentrations of resminostat abrogated cell growth and strongly induced apoptosis (IC50=2.5-3 micromol/l in 3 out of 4 MM cell lines) in MM cell lines as well as primary MM cells. At 1 micromol/l, resminostat inhibited proliferation and induced G0/G1 cell cycle arrest in 3 out of 4 MM cell lines accompanied with decreased levels of cyclin D1, cdc25a, Cdk4 and pRb as well as upregulation of p21. Resminostat decreased phosphorylation of 4E-BP1 and p70S6k indicating an interference with Akt pathway signalling. Treatment with resminostat resulted in increased protein levels of Bim and Bax and decreased levels of Bcl-xL. Caspases 3, 8 and 9 were activated by resminostat. Furthermore, synergistic effects were observed for combinations of resminostat with melphalan and the proteasome inhibitors bortezomib and S-2209. In conclusion, we have identified potent anti-myeloma activity for this novel HDAC inhibitor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2141.2010.08124.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!