Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Modified periodically ordered mesoporous organosilica materials were prepared starting from a recently introduced type of sol-gel precursor, containing both organic moieties and hydrolyzable Si-OR groups. In order to thoroughly characterize the mesoporosity and its accessibility, different probe gases were used in conventional gas adsorption experiments. Furthermore, in situ small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) were applied to study the mesoporosity and the sorption processes, taking advantage of scattering contrast matching conditions. Thereby, the materials were characterized not only by different probe molecules but also at different temperatures (nitrogen at 77 K, dibromomethane at 290 K and perfluoropentane at 276 K). The comparison between the standard and in situ SAXS/SANS adsorption experiments revealed valuable information about the porosity and microstructure of the materials. It is demonstrated that the organic moieties are homogeneously distributed; that is, they do not phase-separate from silica on the nanometer scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la903934r | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!