An iodine and boron co-doped TiO2 photocatalyst was prepared by the hydrolyzation-precipitation method. X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), and X-ray photoelectron spectroscopy (XPS) were applied to characterize the crystalline structure, light absorbing ability, and the chemical state of iodine and boron in the photocatalysts. The results of photocatalytic degradation of methyl orange demonstrated that the I-B-TiO2 catalyst prepared at 400 degrees C for 3 h exhibited the highest photocatalytic activity with a methyl orange degradation ratio of 61% under visible-light (lambda > or = 420 nm) irradiation for 120 min. The characterization results revealed that I-B-TiO2 is in conformity with the anatase TiO2 and that the doping of iodine and boron ions could efficiently inhibit the grain growth. Doped iodine was present in the multivalent forms of 17+, I- and I5+. Doped boron was present as B3+ in an as-prepared sample, forming a possible chemical environment such as B-O-Ti. Overall, the doping of I and B enhanced the ability of TiO2 to absorb visible-light, and it was observed that the photocatalytic activity of I-B-TiO2 was enhanced by the synergistic effect of I and B.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2009.1060DOI Listing

Publication Analysis

Top Keywords

iodine boron
16
photocatalytic activity
12
methyl orange
8
iodine
5
boron
5
tio2
4
tio2 nanopowder
4
nanopowder co-doped
4
co-doped iodine
4
boron enhance
4

Similar Publications

1,3,4,6-Tetraphenylpentalene (PhPn) has been synthesised by chemical oxidation of the corresponding pentalenide complex Mg[PhPn] with iodine. PhPn is a rare example of a room-temperature stable hydrocarbon that is antiaromatic by Hückel's rule and has been fully characterised by NMR and UV-vis spectroscopy, mass spectrometry as well as single-crystal X-ray diffraction. Quantum chemical studies including nucleus-independent chemical shift (NICS) and anisotropy of the induced current density (ACID) calculations showed the existence of an 8π antiaromatic core decorated with four independent 6π aromatic substituents.

View Article and Find Full Text PDF

Synthesis, photochemical properties, liposomal encapsulation, and in vitro photodynamic activity studies of novel BODIPY dimer connected at positions and its brominated and iodinated analogs were described. UV-Vis measurements indicated that the dimeric structure of obtained BODIPYs did not significantly influence the positions of the absorption maxima. Emission properties and singlet oxygen generation studies revealed a strong heavy atom effect of brominated and iodinated BODIPY dimers, manifested by fluorescence intensity reduction and increased singlet oxygen generation ability compared to analog without halogen atoms.

View Article and Find Full Text PDF

This study systematically investigates the oxygen reduction reaction (ORR) catalytic activity of graphene doped with various non-metallic impurities. The non-metal elements include boron (B), silicon (Si), nitrogen (N), phosphorus (P), arsenic (As), oxygen (O), sulfur (S), selenium (Se), tellurium (Te), fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). We found that adsorbates tend to adsorb on positively charged impurity atoms.

View Article and Find Full Text PDF

Surface fluorination mediated electro-oxidative degradation of HFPO-DA on boron-doped diamond electrode.

Environ Pollut

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, College of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China. Electronic address:

Heptafluoropropylene oxide dimer acid (HFPO-DA), as an alternative to perfluorooctanoic acid (PFOA), has been shown to pose similar environmental and health risks as other perfluorinated compounds. The electrochemical-based advanced oxidation processes are promising techniques for the treatment of perfluorinated compounds, and the boron-doped diamond (BDD) anode could degrade HFPO-DA under mild conditions. However, the roles of radicals in the degradation and how to overcome the steric hindrance of the -CF branch on the carboxyl group were not yet clear.

View Article and Find Full Text PDF

Iodine Boosted Fluoro-Organic Borate Electrolytes Enabling Fluent Ion-Conductive Solid Electrolyte Interphase for High-Performance Magnesium Metal Batteries.

Angew Chem Int Ed Engl

November 2024

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.

Rechargeable magnesium batteries are regarded as a promising multi-valent battery system for low-cost and sustainable energy storage applications. Boron-based organic magnesium salts with terminal substituent fluorinated anions (Mg[B(OR)], R=fluorinated alkyl) have exhibited impressive electrochemical stability and oxidative stability. Nevertheless, their deployment is hindered by the complicated synthesis routes and the surface passivation of Mg metal anode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!