TRPM8 is nonselective, Ca2- permeable cationic channel, which is activated by innocuous cold and by chemical drugs imitators of cooling, menthol, icilin and cucalyptol. TRPM8 expression was detected in the smooth muscle cells of the rat vas deference with preferential localization of the TRPM8 protein to the membrane of sarcoplasmic reticulum (SR). In the present work we have studied the effects of TRPM8 channel agonist, menthol, on the contractions of the smooth muscle strips of the epididimal and prostatic portions of the rat vas deferens evoked by potassium rich (KCl) Krebs solution and by muscarinic or adrenergic agonists carbachol (CCh) or noradrenalin (Nor). Menthol (0.1-1 mmol/l) per se virtually unaffected the basal tone, but inhibited in a dose-dependent manner KCl-, CCh- and Nor-evoked contractions of both parts of the vas deference by 30-50%. Blockade of the Ca2+ -ATPase of the SR with cyclopiazonic acid (CPA, 10 micromol/l) enhanced inhibitory action of menthol on KCl-induced contractions, but slightly decreased inhibition by menthol of agonist-induced ones. Nonspecific TRPM8 blocker, capsazepine (10 micromol/l), did not eliminate, but augmented inhibitory action of menthol on all types of contractions. Our data propose that menthol inhibits contractions via two mechanisms: partial blockade of Ca2+ entry via the voltage-gated, L-type calcium channels and a decrease of the calcium storage capacity of the SR. The latter mechanism at least in part is mediated by the SR-resident TRPM8 channel, which by activation of menthol leads to the enhancement of passive leak of Ca2+ from the SR and reduction in the amount of the releasable calcium during activation of contractions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

smooth muscle
12
rat vas
12
trpm8 channel
12
vas deferens
8
channel agonist
8
menthol
8
vas deference
8
blockade ca2+
8
inhibitory action
8
action menthol
8

Similar Publications

Moyamoya disease (MMD) is a vascular disorder characterized by steno-occlusive alterations in cerebral arteries, often resulting in ischemic or hemorrhagic events predominantly affecting the female population and more common in Asian populations. Despite its predominantly neurological manifestations, recent research suggests a potential association between MMD and cardiovascular diseases (CVDs). MMD involves various genetic and environmental factors, with mutations in the RNF213 gene being strongly implicated in disease susceptibility, with histopathological findings revealing intimal lesions and smooth muscle proliferation, contributing to vascular occlusion as well as dysregulation of circulating endothelial and smooth muscle progenitor cells further complicating MMD's pathogenesis.

View Article and Find Full Text PDF

Stem cell therapy for bladder regeneration: A comprehensive systematic review.

Regen Ther

March 2025

Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.

View Article and Find Full Text PDF

Treatment with an inhibitor of glucose use via glucose transporters (GLUT) has been shown to attenuate experimental abdominal aortic aneurysm (AAA) development in mice. Vascular smooth muscle cell (VSMC) signaling seems to be essential for angiotensin II (Ang II)-induced AAA in mice. Accordingly, we have tested a hypothesis that VSMC silencing of the major GLUT, GLUT1, prevents AAA development and rupture in mice treated with Ang II plus β-aminopropionitrile.

View Article and Find Full Text PDF

With the impending 'retirement' of bronchial thermoplasty (BT) for the treatment of patients with asthma, there is much to learn from this real-world experiment that will help us develop more effective future therapies with the same primary target i.e., airway smooth muscle (ASM) remodelling.

View Article and Find Full Text PDF

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!