To gain insight into the effect of diabetes on fracture healing, experiments were carried out focusing on chondrocyte apoptosis during the transition from cartilage to bone. Type 1 diabetes was induced in mice by multiple low-dose streptozotocin injections, and simple transverse fractures of the tibia or femur was carried out. Large-scale transcriptional profiling and gene set enrichment analysis were performed to examine apoptotic pathways on total RNA isolated from fracture calluses on days 12, 16, and 22, a period of endochondral bone formation when cartilage is resorbed and chondrocyte numbers decrease. Tumor necrosis factor alpha (TNF-alpha) protein levels were assessed by ELISA and caspase-3 by bioactivity assay. The role of TNF was examined by treating mice with the TNF-specific inhibitor pegsunercept. In vitro studies investigated the proapoptotic transcription factor FOXO1 in regulating TNF-induced apoptosis of chondrogenic ATDC5 and C3H10T1/2 cells as representative of differentiated chondrocytes, which are important during endochondral ossification. mRNA profiling revealed an upregulation of gene sets related to apoptosis in the diabetic group on day 16 when cartilage resorption is active but not day 12 or day 22. This coincided with elevated TNF-alpha protein levels, chondrocyte apoptosis, enhanced caspase-3 activity, and increased FOXO1 nuclear translocation (p < .05). Inhibition of TNF significantly reduced these parameters in the diabetic mice but not in normoglycemic control mice (p < .05). Silencing FOXO1 using siRNA in vitro significantly reduced TNF-induced apoptosis and caspase activity in differentiated chondrocytes. The mRNA levels of the proapoptotic genes caspase-3, caspase-8, caspase-9, and TRAIL were significantly reduced with silencing of FOXO1 in chondrocytic cells. Inhibiting caspase-8 and caspase-9 significantly reduced TNF-induced apoptosis in chondrogenic cells. These results suggest that diabetes causes an upregulation of proapoptotic genes during the transition from cartilage to bone in fracture healing. Diabetes increased chondrocyte apoptosis through a mechanism that involved enhanced production of TNF-alpha, which stimulates chondrocyte apoptosis and upregulates mRNA levels of apoptotic genes through FOXO1 activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154002PMC
http://dx.doi.org/10.1002/jbmr.59DOI Listing

Publication Analysis

Top Keywords

chondrocyte apoptosis
24
fracture healing
12
tnf-induced apoptosis
12
apoptosis
10
stimulates chondrocyte
8
transition cartilage
8
cartilage bone
8
tnf-alpha protein
8
protein levels
8
apoptosis chondrogenic
8

Similar Publications

The role of celastrol in inflammation and diseases.

Inflamm Res

January 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.

Celastrol is one of the main active ingredients extracted from the plant Tripterygium wilfordii Hook F. A growing number of studies have shown that celastrol has various pharmacological effects, including anti-inflammation, anti-rheumatism, treatment of neurodegenerative diseases, and anti-tumor. This article systematically summarized the mechanism and role of celastrol in lipid metabolism and obesity, rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis, inflammatory bowel disease, neurodegenerative diseases, and cancer and other diseases (such as diabetes, respiratory-related diseases, atherosclerosis, psoriasis, hearing loss, etc.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a chronic disease characterized by cartilage degradation, leading to bone friction, inflammation, stiffness, pain, and reduced mobility. This study investigates the therapeutic effects of porcine-derived chondroitin sulfate sodium (CS) on OA symptoms at both cellular and animal levels. study, HTB-94 chondrocytes were treated with inflammatory stimuli and CS (10, 50, 100, and 200 μg/mL) to assess the release of inflammatory mediators and the expression of genes and proteins related to cartilage synthesis and degradation.

View Article and Find Full Text PDF

Targeting p21-Positive Senescent Chondrocytes via IL-6R/JAK2 Inhibition to Alleviate Osteoarthritis.

Adv Sci (Weinh)

January 2025

Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Zhengzhou, Henan, 450003, China.

Osteoarthritis (OA) is an age-related degenerative joint disease, prominently influenced by the pro-inflammatory cytokine interleukin-6 (IL-6). Although elevated IL-6 levels in joint fluid are well-documented, the uneven cartilage degeneration observed in knee OA patients suggests additional underlying mechanisms. This study investigates the role of interleukin-6 receptor (IL-6R) in mediating IL-6 signaling and its contribution to OA progression.

View Article and Find Full Text PDF

Mesenchymal stromal cells-derived extracellular vesicles in cartilage regeneration: potential and limitations.

Stem Cell Res Ther

January 2025

Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Pública Gallega de Investigación Biomédica INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, 15006, Spain.

Background: Articular cartilage injuries can lead to pain, stiffness, and reduced mobility, and may eventually progress to osteoarthritis (OA). Despite substantial research efforts, effective therapies capable of regenerating cartilage are still lacking. Mesenchymal stromal cells (MSCs) are known for their differentiation and immunomodulatory capabilities, yet challenges such as limited survival post-injection and inconsistent therapeutic outcomes hinder their clinical application.

View Article and Find Full Text PDF

FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia.

Bone Res

January 2025

Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France.

Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!