The surface chemistry of crotonaldehyde and propene, primary and secondary reaction products in the aerobic selective oxidation of crotyl alcohol, has been studied by temperature-programmed reaction over Au/Pd(111) surface alloys. Gold strongly promotes desorption versus reaction at mole fractions > or = 0.3 (crotonaldehyde) and > or = 0.8 (C(3)H(6)); only approximately 5% of the chemisorbed aldehyde or alkene react over Au-rich alloys. Surprisingly, co-adsorbed oxygen strongly suppresses crotonaldehyde decomposition over both clean Pd(111) and alloy surfaces, while C(3)H(6) combustion, an important undesired side-reaction over unpromoted Pd(111), is also moderated by Au.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b921669cDOI Listing

Publication Analysis

Top Keywords

crotonaldehyde propene
8
reactivity crotonaldehyde
4
propene au/pd111
4
au/pd111 surfaces
4
surfaces surface
4
surface chemistry
4
chemistry crotonaldehyde
4
propene primary
4
primary secondary
4
secondary reaction
4

Similar Publications

This study aimed to explore the flavor formation mechanism of Diqing Tibetan pig hams by investigating changes of their physicochemical and volatile flavor compounds during fermentation (0, 30, 90, 180, 360, and 540d) using amino acid analyzer , texture profile analysis, and gas chromatography-ion mobility spectroscopy (GC-IMS). During fermentation, the hams significantly decreased in moisture and centrifugal loss, while increased in chewiness, hardness, and proteolysis index, with their free amino acids content reaching the maximum at 360d and significantly decreasing at 540d. GC-IMS identified 78 volatile organic compounds, with the highest total content of alcohols and aldehydes at 180d, ketones and heterocycles at 360d, and esters at 540d.

View Article and Find Full Text PDF

The reaction of unsaturated compounds with ozone (O) is recognized to lead to the formation of Criegee intermediates (CIs), which play a key role in controlling the atmospheric budget of hydroxyl radicals and secondary organic aerosols. The reaction network of two CIs with different functionality, acetaldehyde oxide (CHCHOO) and glyoxal oxide (CHOCHOO) formed in the ozone-assisted oxidation reaction of crotanaldehyde (CA), is investigated over a temperature range between 390 K and 840 K in an atmospheric pressure jet-stirred reactor (JSR) at a residence time of 1.3 s, stoichiometry of 0.

View Article and Find Full Text PDF

Sexual dimorphism association of combined exposure to volatile organic compounds (VOC) with kidney damage.

Environ Res

October 2024

Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang, 222000, China.

Background: Epidemiological evidence emphasizes air pollutants' role in chronic kidney disease (CKD). Volatile organic compounds (VOCs) contribute to air pollution, yet research on VOCs and kidney damage, especially gender disparities, is limited.

Methods: This study analyzed NHANES data to explore associations between urinary VOC metabolite mixtures (VOCMs) and key kidney-related parameters: estimated glomerular filtration rate (eGFR), albumin-to-creatinine ratio (ACR), chronic kidney disease (CKD), and albuminuria.

View Article and Find Full Text PDF

(1) Background: Volatile organic compounds (VOCs) are indoor pollutants absorbed by inhalation. The association of several VOCs with lung function in children and adolescents is unknown. (2) Methods: We analyzed 505 participants, 6-17-year-olds from the 2011-2012 National Health and Nutrition Examination Survey.

View Article and Find Full Text PDF

Serum HDL partially mediates the association between exposure to volatile organic compounds and kidney stones: A nationally representative cross-sectional study from NHANES.

Sci Total Environ

January 2024

Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, USA. Electronic address:

Environmental exposure to volatile organic compounds (VOCs) is ubiquitous, and this study explored whether exposure to VOCs is associated with the risk of kidney stones. We performed a nationally representative US cross-sectional study using data from five survey cycles (2011-2020) of the National Health and Nutrition Examination Survey (NHANES) program. Exposure to VOCs was determined by urine creatinine-corrected metabolites of VOCs (mVOCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!