This work reports a detailed investigation about the physicochemical properties of superparamagnetic gamma-Fe(2)O(3) nanomaterial synthesized by the co-precipitation method and coated with two silica shells, and its application as support for the immobilization of oxovanadium(IV) acetylacetonate ([VO(acac)(2)]). The influence of the silica coatings on the surface composition and physicochemical interactions of the core-shell nanocomposites is discussed based on the combination of several techniques: electron microscopy techniques (SEM and TEM with EDS), DLS, powder XRD, XPS, FTIR and magnetic characterization. The identity of the iron oxide, gamma-Fe(2)O(3), was confirmed by XPS, FTIR and by the Rietveld refinement of the PXRD pattern. The results obtained by electron microscopy techniques, XRD and magnetization indicated that the gamma-Fe(2)O(3) nanoparticles are superparamagnetic and present an average size of approximately 6.5 nm. The first silica coating leads to a core-shell nanomaterial with an average particle size of 21 nm and upon the second coating, the average size increases to 240 nm. Magnetic measurements revealed that the silica-coated nanomaterials maintain the superparamagnetic state at room temperature, although with an expected reduction of the magnetization saturation due to the increase of the silica shell thickness. Furthermore, a numerical fit of the temperature dependence of magnetization was performed to determine the core size distribution and the effect of the silica coatings on the dipolar magnetic interactions. [VO(acac)(2)] was covalently immobilized on the surface of the silica-coated magnetic nanoparticles functionalized with amine groups, as confirmed by chemical analysis and XPS. In a proof-of-principle experiment, we demonstrated the catalytic performance of the novel magnetic hybrid nanomaterial in the epoxidation of geraniol, which presented high selectivity towards the 2,3-epoxygeraniol product and easy recovery by magnetic separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b920853d | DOI Listing |
Cureus
December 2024
Emergency Medicine, West Midlands Deanery, Birmingham, GBR.
Cervical spine injuries are one of the most common injuries of the spine that are encountered in the emergency department (ED). More than half of all spinal injuries presenting to the ED involve the cervical spine, with nearly half of them resulting from road traffic accidents. The majority of spinal cord injuries are found to occur in males of younger age groups, with almost half of them resulting in incomplete spinal cord injuries.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Earth Sciences, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada.
Metal mining operations can release toxic metals to surrounding environments where site-specific conditions control the movement of contaminants. Colloid-facilitated transport, the transport of contaminants with small, mobile particles, has been recognized as a potential contaminant transport vector in groundwater, but it remains unclear under what conditions it is important and whether neutral, metal-rich mine drainage from legacy mining impacts this transport vector. This work presents a set of laboratory column experiments that study the effect of colloids on metal mobility in saturated, wetland sediment that has been receiving neutral mine drainage for nearly a century, using mixed and single metal input solutions at neutral pH.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Türkiye; BAUZYME Biotechnology Co., Gebze Technical University Technopark, 41400, Gebze, Kocaeli, Türkiye. Electronic address:
α-Amylases, constituting a significant share of the enzyme market, are mainly synthesized by the genus Bacillus. Enzymes tailored for specific industrial applications are needed to meet the growing demand across a range of industries, and thus finding new amylases and optimizing the ones that already exist are extremely important. This study reports the successful expression, characterization and immobilization of P.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Applied Geochemistry, Department of Civil, Environmental and Natural Resource Engineering, Luleå University of Technology, Luleå, Sweden.
Research regarding the geochemistry of beryllium (Be) in terrestrial environments is hindered by its high toxicity to humans and the low concentrations normally occurring in the environment. Although Be is considered an immobile element, extremely high dissolved concentrations have been detected in groundwater in the legacy Tailings Storage Facility (TSF) of Smaltjärnen, Sweden. Therefore, a detailed study was conducted to determine physiochemical parameters affecting the speciation of Be in the groundwater.
View Article and Find Full Text PDFSci Total Environ
January 2025
Temple University, Department of Civil and Environmental Engineering, 1947 North 12(th) Street, Philadelphia, PA 19122, United States. Electronic address:
The importance of pH in stormwater bioretention beds cannot be overstated since it impacts plant and microbial populations and removal of potentially toxic elements (PTEs) from stormwater runoff. This study investigated the effects of dolomite amendment on pH neutralization and subsequent PTE immobilization in bioretention media. To assess dolomite dissolution, pH neutralization, and PTE immobilization, engineered bioretention media was amended with different dolomite ratios and samples of dolomite-amended media were collected from two bioretention beds, one and two months after installation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!