Stathmin, a microtubule regulatory protein, is overexpressed in many cancers and required for survival of several cancer lines. In a study of breast cancer cell lines(1) proposed that stathmin is required for survival of cells lacking p53, but this hypothesis was not tested directly. Here we tested their hypothesis by examining cell survival in cells depleted of stathmin, p53 or both proteins. Comparing HCT116 colon cancer cell lines differing in TP53 genotype, stathmin depletion resulted in significant death only in cells lacking p53. As a second experimental system, we compared the effects of stathmin depletion from HeLa cells, which normally lack detectable levels of p53 due to expression of the HPV E6 protein. Stathmin depletion caused a large percentage of HeLa cells to die. Restoring p53, by depletion of HPV E6, rescued HeLa cells from stathmin-depletion induced death. Cleaved PARP was detected in HCT116(p53-/-) cells depleted of stathmin and cell death in stathmin-depleted HeLa cells was blocked by the caspase inhibitor Z-VAD-FMK, consistent with apoptotic death. The stathmin-dependent survival of cells lacking p53 was not confined to cancerous cells because both proteins were required for survival of normal human fibroblasts. In HCT116 and HeLa cells, depletion of both stathmin and p53 leads to a cell cycle delay through G(2). Our results demonstrate that stathmin is required for cell survival in cells lacking p53, suggesting that stathmin depletion could be used therapeutically to induce apoptosis in tumors without functional p53.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/cbt.9.9.11430 | DOI Listing |
Biomater Adv
December 2024
Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea. Electronic address:
MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.
View Article and Find Full Text PDFSci Rep
December 2024
IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.
Targeting nuclear mechanics is emerging as a promising therapeutic strategy for sensitizing cancer cells to immunotherapy. Inhibition of the mechano-sensory kinase ATR leads to mechanical vulnerability of cancer cells, causing nuclear envelope softness and collapse and activation of the cGAS-STING-mediated innate immune response. Finding novel compounds that interfere with the non-canonical role of ATR in controlling nuclear mechanics presents an intriguing therapeutic opportunity.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.
Microbubble-facilitated sonoporation is a rapid, versatile, and non-viral intracellular delivery technique with potential for clinical and ex vivo cell engineering applications. We developed a micropatterning-based approach to investigate the impact of cell shape on sonoporation efficacy. Cationic microbubbles were employed to enhance sonoporation by binding to the cell membrane electrostatically.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
Background/aim: Replication factor C subunit 3 (RFC3) is a critical component of the replication factor C complex, which is essential for DNA replication and repair. Recent studies have highlighted the RFC3's significance in various cancer types. Herein, we aimed to elucidate its biological role in cervical cancer.
View Article and Find Full Text PDFDiscov Nano
December 2024
Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
Cervical cancer remains a significant health challenge in developing countries are high due to low HPV vaccination rates, delayed diagnosis, and restricted healthcare access. Metal nanomaterials, such as copper oxide (CuO) nanoparticles (NPs), have shown significant promise in cancer therapy due to their ability to induce apoptosis. 5-Fluorouracil (5-Fu) enhances the cytotoxic effect against cervical cancer, working synergistically with CuO NPs to maximize the therapeutic impact while potentially reducing the 5-Fu's systemic side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!