Reconstruction of a 3-D structure from multiple projection images requires prior knowledge of projection directions or camera motion parameters that describe the relative positions and orientations of 3-D structure with respect to the camera. These parameters can be estimated using, for instance, the conventional correlation alignment and feature-based methods. However, the alignment methods are not perfect, where the inaccuracy of the estimated motion parameters causes artifacts in the reconstruction. To overcome this problem, we propose a bayesian approach to reconstruct the object that takes the motion uncertainty distribution into account. Moreover, we consider the motion parameters as nuisance parameters and integrate them out from the posterior distribution, assuming a gaussian uncertainty model, which yields a statistical cost function to be minimized. The proposed method is applied in microrotation fluorescence imaging, where we aim at 3-D reconstruction of a rotating object from an image series, acquired by an optical microscope. The experiments with simulated and real microrotation datasets demonstrate that the proposed method provides visually and numerically better results than the traditional reconstruction methods, which ignore the uncertainty of the motion estimates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2010.2043674 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Orthopedics, Qingdao Municipal Hospital, 1 Jiaozhou Road, Shinan District, QingDao, Shandong Province, 266399, China.
Background: Spacer-type tibial osteotomy have been proven a novel and effective osteotomy to treat osteoarthritis, while lack of comparison with other surgical methods in younger patients. This study aims to evaluate the short-term clinical outcomes of spacer-type tibial osteotomy versus open wedge high tibial osteotomy (OWHTO) and unicompartmental knee arthroplasty (UKA) for Kellgren-Lawrence (K-L) grade 3-4 osteoarthritis (OA) in patients younger than 65 years.
Methods: This retrospective study analyzed a total of 224 patients with K-L grade 3-4 knee OA treated from March 2018 to November 2020.
J Matern Fetal Neonatal Med
December 2025
Fetal Medicine Unit, St George's Hospital, London, UK.
Objective: To evaluate whether, in late pregnancy, the cerebral Doppler can identify very small fetuses that are less likely to experience intrapartum compromise (IC).
Material And Methods: This was a retrospective study of 282 singleton pregnancies that underwent an ultrasound scan at 32 + 0- 40 + 6 weeks and were delivered after induction, or spontaneous onset of labor. Very small fetuses were defined as fetuses with estimated weight less than the 3rd centile.
J Biomech
January 2025
Instituto Brasil de Tecnologias da Saúde, Rua Visconde de Piraja, 407 suite 905, Rio de Janeiro, RJ 22410-003, Brazil; Depto. de Diagnóstico por Imagem - Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Napoleão de Barros, 800, São Paulo, SP, Brazil. Electronic address:
Anterior Shoulder Instability (ASI) is a common orthopedic condition often resulting in altered shoulder kinematics. Understanding the biomechanics of the unstable shoulder is critical to determine the most appropriate treatment. This study aims to conduct the first systematic review and meta-analysis of three-dimensional (3D) shoulder kinematic studies in ASI patients.
View Article and Find Full Text PDFFoot Ankle Int
January 2025
Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
Background: Calcaneal fracture malunion (CFM) commonly occurs with multiple pathologic changes and progressive pain and difficulty walking. The purpose of this study was to propose a modified 3-plane joint-preserving osteotomy for the treatment of CFM with subtalar joint incongruence, and to compare its efficacy to subtalar arthrodesis.
Methods: A retrospective comparative analysis of the data of 56 patients with CFM admitted from January 2017 to December 2022 was performed.
Polymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!