To transit between hosts, intracellular Legionella pneumophila transform into a motile, infectious, transmissive state. Here we exploit the pathogen's life cycle to examine how guanosine tetraphosphate (ppGpp) and DksA cooperate to govern bacterial differentiation. Transcriptional profiling revealed that during transmission alarmone accumulation increases the mRNA for flagellar and Type IV-secretion components, secreted host effectors and regulators, and decreases transcripts for translation, membrane modification and ATP synthesis machinery. DksA is critical for differentiation, since mutants are defective for stationary phase survival, flagellar gene activation, lysosome avoidance and macrophage cytotoxicity. The roles of ppGpp and DksA depend on the context. For macrophage transmission, ppGpp is essential, whereas DksA is dispensable, indicating that ppGpp can act autonomously. In broth, DksA promotes differentiation when ppGpp levels increase, or during fatty acid stress, as judged by flaA expression and evasion of degradation by macrophages. For flagella morphogenesis, DksA is required for basal fliA (sigma(28)) promoter activity. When alarmone levels increase, DksA cooperates with ppGpp to generate a pulse of Class II rod RNA or to amplify the Class III sigma factor and Class IV flagellin RNAs. Thus, DksA responds to the level of ppGpp and other stress signals to co-ordinate L. pneumophila differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908999 | PMC |
http://dx.doi.org/10.1111/j.1365-2958.2010.07094.x | DOI Listing |
PNAS Nexus
April 2024
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
In response to nutrient deprivation, bacteria activate a conserved stress response pathway called the stringent response (SR). During SR activation in , SpoT synthesizes the secondary messengers guanosine 5'-diphosphate 3'-diphosphate and guanosine 5'-triphosphate 3'-diphosphate (collectively known as (p)ppGpp), which affect transcription by binding RNA polymerase (RNAP) to down-regulate anabolic genes. (p)ppGpp also impacts the expression of anabolic genes by controlling the levels and activities of their transcriptional regulators.
View Article and Find Full Text PDFPLoS One
April 2024
Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México.
The stringent response exerted by (p)ppGpp and RNA-polymerase binding protein DksA regulates gene expression in diverse bacterial species. To control gene expression (p)ppGpp, synthesized by enzymes RelA and SpoT, interacts with two sites within the RNA polymerase; site 1, located in the interphase between subunits β' and ω (rpoZ), and site 2 located in the secondary channel that is dependent on DksA protein. In Escherichia coli, inactivation of dksA results in a reduced sigma factor RpoS expression.
View Article and Find Full Text PDFbioRxiv
December 2023
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205.
In response to nutrient deprivation, bacteria activate a conserved stress response pathway called the stringent response (SR). During SR activation in , SpoT synthesizes the secondary messengers (p)ppGpp, which affect transcription by binding RNA polymerase to downregulate anabolic genes. (p)ppGpp also impacts expression of anabolic genes by controlling the levels and activities of their transcriptional regulators.
View Article and Find Full Text PDFmBio
December 2023
Department of Biology, Washington University in St. Louis, Saint Louis, Missouri, USA.
Cell division is a key step in the bacterial lifecycle that must be appropriately regulated to ensure survival. This work identifies the alarmone (p)ppGpp (ppGpp) as a general regulator of cell division, extending our understanding of the role of ppGpp beyond a signal for starvation and other stress. Even in nutrient-replete conditions, basal levels of ppGpp are essential for division to occur appropriately and for cell size to be maintained.
View Article and Find Full Text PDFInt J Mol Sci
July 2023
Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, 17 Qinghua East Rd., Beijing 100083, China.
DksA is a proteobacterial regulator that binds directly to the secondary channel of RNA polymerase with (p)ppGpp and is responsible for various bacterial physiological activities. While (p)ppGpp is known to be involved in the regulation and response of fatty acid metabolism pathways in many foodborne pathogens, the role of DksA in this process has yet to be clarified. This study aimed to characterize the function of DksA on fatty acid metabolism and cell membrane structure in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!