Background: A quadrivalent meningococcal conjugate vaccine (MCV4) was licensed in the United States in 2005; no serogroup B vaccine is available. Neisseria meningitidis changes its capsular phenotype through capsular switching, which has implications for vaccines that do not protect against all serogroups.
Methods: Meningococcal isolates from 10 Active Bacterial Core surveillance sites from 2000 through 2005 were analyzed to identify changes occurring after MCV4 licensure. Isolates were characterized by multilocus sequence typing (MLST) and outer membrane protein gene sequencing. Isolates expressing capsular polysaccharide different from that associated with the MLST lineage were considered to demonstrate capsular switching.
Results: Among 1160 isolates, the most common genetic lineages were the sequence type (ST)-23, ST-32, ST-11, and ST-41/44 clonal complexes. Of serogroup B and Y isolates, 8 (1.5%) and 3 (0.9%), respectively, demonstrated capsular switching, compared with 36 (12.9%) for serogroup C (P < .001); most serogroup C switches were from virulent serogroup B and/or serogroup Y lineages.
Conclusions: A limited number of genetic lineages caused the majority of invasive meningococcal infections. A substantial proportion of isolates had evidence of capsular switching. The high prevalence of capsular switching requires surveillance to detect changes in the meningococcal population structure that may affect the effectiveness of meningococcal vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838939 | PMC |
http://dx.doi.org/10.1086/651505 | DOI Listing |
Genome Med
October 2024
Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway.
Fluoroquinolone-resistant sequence type (ST)1193 is a profound, emerging lineage associated with systemic, urinary tract and neonatal infections. Humans, companion animals and the environment are reservoirs for ST1193, which has been disseminated globally. Following its detection in 2007, ST1193 has been identified repeatedly amongst fluoroquinolone-resistant clones in Australia.
View Article and Find Full Text PDFVet Res
September 2024
Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada.
Streptococcus suis is a major swine pathogen and zoonotic agent, causing important economic losses to the porcine industry. Here, we used genomics approaches to characterize 251 S. suis isolates recovered from diseased pigs across Belgium, France, Germany, Hungary, the Netherlands, Spain, and the United Kingdom.
View Article and Find Full Text PDFTetrahedron
September 2024
Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
We developed a method for making immune responses to bacterial glycans T cell-dependent, which involves attachment of short, synthetic glycans to a virus-like nanoparticle (VLP). This strategy enhances immune responses to glycans by facilitating cognate T cell help of B cells, leading to antibody class switching and affinity maturation yielding high-affinity, anti-glycan antibodies. This method requires synthesis of bacterial glycans as propargyl glycosides for covalent attachment to VLPs, and the resulting short linker between the VLP and glycan is important for optimal T cell receptor recognition.
View Article and Find Full Text PDFSci Rep
September 2024
Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!