We report direct observation of controlled and reversible switching of magnetic domains using static (dc) electric fields applied in situ during Lorentz microscopy. The switching is realized through electromechanical coupling in thin film Fe(0.7)Ga(0.3)/BaTiO(3) bilayer structures mechanically released from the growth substrate. The domain wall motion is observed dynamically, allowing the direct association of local magnetic ordering throughout a range of applied electric fields. During application of approximately 7-11 MV/m electric fields to the piezoelectric BaTiO(3) film, local magnetic domains rearrange in the ferromagnetic Fe(0.7)Ga(0.3) layer due to the transfer of strain from the BaTiO(3) film. A simulation based on micromagnetic modeling shows a magnetostrictive anisotropy of 25 kPa induced in the Fe(0.7)Ga(0.3) due to the strain. This electric-field-dependent uniaxial anisotropy is proposed as a possible mechanism to control the coercive field during operation of an integrated magnetoelectric memory node.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl9036406DOI Listing

Publication Analysis

Top Keywords

electric fields
16
magnetic domains
8
local magnetic
8
batio3 film
8
situ observation
4
observation reversible
4
reversible nanomagnetic
4
nanomagnetic switching
4
switching induced
4
electric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!