Nanofabrication by molecular self-assembly involves the design of molecules and self-assembly strategies so that shape and chemical complementarities drive the units to organize spontaneously into the desired structures. The power of self-assembly makes it the ubiquitous strategy of living organized matter and provides a powerful tool to chemists. However, a challenging issue in the self-assembly of complex supramolecular structures is to understand how kinetically efficient pathways emerge from the multitude of possible transition states and routes. Unfortunately, very few systems provide an intelligible structure and formation mechanism on which new models can be developed. Here, we elucidate the molecular and supramolecular self-assembly mechanism of synthetic octapeptide into nanotubes in equilibrium conditions. Their complex hierarchical self-assembly has recently been described at the mesoscopic level, and we show now that this system uniquely exhibits three assembly stages and three intermediates: (i) a peptide dimer is evidenced by both analytical centrifugation and NMR translational diffusion experiments; (ii) an open ribbon and (iii) an unstable helical ribbon are both visualized by transmission electron microscopy and characterized by small angle X-ray scattering. Interestingly, the structural features of two stable intermediates are related to the final nanotube organization as they set, respectively, the nanotube wall thickness and the final wall curvature radius. We propose that a specific self-assembly pathway is selected by the existence of such preorganized and stable intermediates so that a unique final molecular organization is kinetically favored. Our findings suggests that the rational design of oligopeptides can encode both molecular- and macro-scale morphological characteristics of their higher-order assemblies, thus opening the way to ultrahigh resolution peptide scaffold engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja9088023 | DOI Listing |
Org Lett
January 2025
Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
Herein, we have reported the application of bench stable perfluoroalkanoic acids as fluoro-alkylating reagents in combination with DIB and primary amides for sequential one-pot transformation to R-embedded functionalized amides under metal-free conditions. The protocol is tolerant to a range of sensitive functional groups (>33 examples and up to 90% yield), and perfluoro acids. Preliminary mechanistic studies, control experiments, in situ F-NMR analyses, and the synthesis of intermediate species were performed to understand the reaction pathways.
View Article and Find Full Text PDFFront Microbiol
December 2024
Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
To prevent H9N2 avian influenza virus (AIV) and Avian metapneumonovirus/C (aMPV/C) infections, we constructed recombinant aMPV/C viruses expressing the HA protein of H9N2 AIV. In addition, EGFP was inserted into the intermediate non-coding region of P-M protein in the aMPV/C genome using a reverse genetic system. The conditions for rescuing the recombinant virus were enhanced followed by insertion of the H9N2 AIV HA gene into the same location in the aMPV/C.
View Article and Find Full Text PDFRev Cardiovasc Med
December 2024
General Surgery Department, The First Hospital of Anhui University of Science & Technology (Huai Nan First People's Hospital), 232002 Huainan, Anhui, China.
Background: This study aimed to develop and evaluate the detection and classification performance of different deep learning models on carotid plaque ultrasound images to achieve efficient and precise ultrasound screening for carotid atherosclerotic plaques.
Methods: This study collected 5611 carotid ultrasound images from 3683 patients from four hospitals between September 17, 2020, and December 17, 2022. By cropping redundant information from the images and annotating them using professional physicians, the dataset was divided into a training set (3927 images) and a test set (1684 images).
Phys Eng Sci Med
December 2024
Department of Clinical Radiology and Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
This study proposed noninvasive machine-learning models for the detection of lesion-specific ischemia (LSI) in patients with stable angina with intermediate stenosis severity based on coronary computed tomography (CT) angiography. This single-center retrospective study analyzed 76 patients (99 vessels) with stable angina who underwent coronary CT angiography (CCTA) and had intermediate stenosis severity (40-69%) on invasive coronary angiography. LSI, defined as a resting full-cycle ratio < 0.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
Coordination complexes are promising candidates for powerful electrocatalytic oxygen evolution reaction but challenges remain in favoring the kinetics behaviors through local coordination regulation. Herein, by refining the synergy of carboxylate anions and multiconjugated benzimidazole ligands, we tailor a series of well-defined and stable coordination complexes with three-dimensional supramolecular/coordinated structures. The coordinated water as potential open coordination sites can directly become intermediates, while the metal center easily achieves re-coordination with water molecules in the pores to resist lattice oxygen dissolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!