This study compares the behavior of osteoblastic cells seeded on three structurally distinct collagen-based materials. Adhesion and long-term behavior were evaluated in vitro in regard to collagen scaffolds forming loose or dense fibrillar networks or exempt of fibrils. In this purpose collagen solutions at concentrations of 5 and 40 mg/mL were processed by freeze-drying or by sol/gel fibrillogenesis to form either sponges or hydrogels. Macroscopic and microscopic images of sponges showed a light material exhibiting large pores surrounded by dense collagen walls made of thin unstriated microfibrils of 20 nm in diameter. In comparison collagen hydrogels are more homogeneous materials, at 5 mg/mL the material consists of a regular network of cross-striated collagen fibrils of 100 nm in diameter. At 40 mg/mL the material appears stiffer, the ultrastructure exhibits cross-striated collagen fibrils packed in large bundles of 300-800 nm of width. Human osteoblastic cells seeded on top of the 5 mg/mL matrices exhibit a squared shaped osteoblast-like morphology over 28 days of culture and express both alkaline phosphatase and osteocalcin. Osteoblastic cells seeded on top of sponges or of 40 mg/mL matrices exhibit both flat and elongated resting-osteoblast morphology. Osteoblastic cells have mineralized the three collagen-based materials after 28 days of culture but collagen sponges spontaneously mineralized in absence of cells. These results highlight, in an in vitro cell culture approach, the benefit of fibrils and of dense fibrillar networks close to in vivo-like tissues, as positive criteria for new bone tissue repair materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32717DOI Listing

Publication Analysis

Top Keywords

osteoblastic cells
16
cells seeded
12
collagen
8
long-term behavior
8
collagen-based materials
8
dense fibrillar
8
fibrillar networks
8
mg/ml material
8
cross-striated collagen
8
collagen fibrils
8

Similar Publications

Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).

View Article and Find Full Text PDF

Background/purpose: Osseointegration potential is greatly depended on the interaction between bone cells and dental implant surface. Since zirconia ceramic has a bioinert surface, functionalization of the surface with an organic compound allylamine was conducted to overcome its drawback of minimal interaction with the surrounding bone.

Materials And Methods: The zirconia surface was initially treated with argon glow discharge plasma (GDP), then combined with amine plasma at three different conditions of 50-W, 75-W and 85-W, to prepare the final samples.

View Article and Find Full Text PDF

Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging.

View Article and Find Full Text PDF

Oriented Cortical-Bone-Like Silk Protein Lamellae Effectively Repair Large Segmental Bone Defects in Pigs.

Adv Mater

January 2025

Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.

Assembling natural proteins into large, strong, bone-mimetic scaffolds for repairing bone defects in large-animal load-bearing sites remain elusive. Here this challenge is tackled by assembling pure silk fibroin (SF) into 3D scaffolds with cortical-bone-like lamellae, superior strength, and biodegradability through freeze-casting. The unique lamellae promote the attachment, migration, and proliferation of tissue-regenerative cells (e.

View Article and Find Full Text PDF

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!