Carbon nanotubes (CNTs) provide a suitable environment for growth and proliferation of bone cells. The elastic properties exhibited by CNTs can enhance mechanical characteristics of bone mineral phase, hydroxyapatite (HAp), precipitated on such a scaffold. In this article, a simplified model for estimating the axial Young's modulus of a representative volume element (RVE) of CNT-HAp composite is presented. The model is based on the idea of HAp formation on functionalized sites on CNTs as cross-links between HAp matrix and CNT. Modeling results show that the reinforcement role contributed by CNT in the RVE causes a significant increase in the Young's modulus of the composite material which is a direct consequence of transferring stresses from the HAp matrix to the CNT through the cross-links. Similar conclusions may be suggested regarding the improvement of overall mechanical properties of the material. The prediction made by the model lies reasonably well within the limits proposed by conventional Rule-of-Mixtures, and sliding below Voigt's model. The Young's modulus predicted by the model lies adjacent to the Hashin-Shtrikman upper bound as a function of the RVE length (or equivalently CNT aspect ratio). The model simulation indicates that an increase in the CNT aspect ratio and/or number of cross-links in the RVE, results in the prediction to move closer to the estimation made by Voigt as the assumption of perfect bonding between composite phases is approached.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.32737 | DOI Listing |
Sci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G: Colombo, 71, 20133 Milano, Italy.
Background/objectives: The objective of this paper is to design a novel film-forming system (FFS) based on Eudragit E PO (EuE) polymeric solutions, differing in volatile solvents (i.e., isopropanol and ethanol) and plasticizers (i.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory of Advanced Pharmaceutical Process Engineering, Gifu Pharmaceutical University, 5-6-1 Mitahora-Higashi, Gifu 502-8585, Japan.
: Orally disintegrating film (ODF) is prepared using water-soluble polymers as film-forming agents. To improve mechanical and disintegration properties, some polymers need to be blended with others. This study aimed to investigate the utility of hydroxypropyl cellulose (HPC) and hydroxypropyl methyl cellulose (HPMC) as blend film-forming components for ODFs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Physics, Washington State University, Pullman, WA 99163, USA.
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil.
In this research, poly(lactic acid) (PLA) nanocomposites with multi-walled carbon nanotubes (MWCNT) were produced by extrusion, injection, and compression molding, focusing on electromagnetic shielding. Various amounts of carbon nanotubes (MWCNTs) were tested in PLA matrix, specifically ranging from 1 to 4 parts per hundred resin (phr). The resulting nanocomposites were analyzed before and after undergoing annealing heat treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!